
A Appendix

A.1 Proof of Theorem 3.1

First we argue that θ̂n
P→ θobs. Note that

θ̂n =

∑
1≤i≤n Yi(1)Ri(1)Di∑

1≤i≤n Ri(1)Di
−
∑

1≤i≤n Yi(0)Ri(0)(1−Di)∑
1≤i≤n Ri(0)(1−Di)

.

By Lemma S.1.5 in Bai et al. (2021),

1

n/2

∑
1≤i≤n

Yi(1)Ri(1)Di
P→ E[Yi(1)Ri(1)] ,

1

n/2

∑
1≤i≤n

Ri(1)Di
P→ E[Ri(1)] ,

1

n/2

∑
1≤i≤n

Yi(0)Ri(0)(1−Di)
P→ E[Yi(0)Ri(0)] ,

1

n/2

∑
1≤i≤n

Ri(0)Di
P→ E[Ri(0)] .

Hence the result follows by the continuous mapping theorem. Next we argue that θ̂dropn
P→ θdrop. To

begin, recall that θ̂dropn = B−1
n Cn, where

Bn =
1

n/2

∑
1≤j≤n/2

Rπ(2j−1)Rπ(2j)

Cn =
1

n/2

∑
1≤j≤n/2

Rπ(2j−1)Rπ(2j)(Yπ(2j−1) − Yπ(2j))(Dπ(2j−1) −Dπ(2j))

For Bn, it follows Assumptions 3.1, 3.2(a), 3.3, the fact that Ri(d) ∈ {0, 1} for d ∈ {0, 1} and therefore

has finite second moments, and similar arguments to those in the proof of Lemma S.1.6 of Bai et al.

(2021) that as n → ∞,

Bn
P→ E[E[Ri(1)|Xi]E[Ri(0)|Xi]] . (9)

Next, we turn to Cn. Note

Cn =
1

n/2

∑
1≤j≤n/2

(
Rπ(2j−1)(1)Rπ(2j)(0)(Yπ(2j−1)(1)− Yπ(2j)(0))Dπ(2j−1)

+Rπ(2j−1)(0)Rπ(2j)(1)(Yπ(2j)(1)− Yπ(2j−1)(0))(1−Dπ(2j−1))
)
.
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It follows from Assumption 3.1 and Qn = Qn that

E[Cn|X(n)] =
1

n

∑
1≤j≤n/2

(
E[Yπ(2j−1)(1)Rπ(2j−1)(1)|Xπ(2j−1)]E[Rπ(2j)(0)|Xπ(2j)]

− E[Yπ(2j)(0)Rπ(2j)(0)|Xπ(2j)]E[Rπ(2j−1)(1)|Xπ(2j−1)]

+ E[Yπ(2j)(1)Rπ(2j)(1)|Xπ(2j)]E[Rπ(2j−1)(0)|Xπ(2j−1)]

− E[Yπ(2j−1)(0)Rπ(2j−1)(0)|Xπ(2j−1)]E[Rπ(2j)(1)|Xπ(2j)]
)

Next, it follows from Assumptions 2.1(a), 3.2(b), 3.1, 3.3, and similar arguments to those in the proof

of Lemma S.1.6 of Bai et al. (2021) that as n → ∞,

1

n

∑
1≤j≤n/2

(
E[Yπ(2j−1)(1)Rπ(2j−1)(1)|Xπ(2j−1)]E[Rπ(2j)(0)|Xπ(2j)]

+ E[Yπ(2j)(1)Rπ(2j)(1)|Xπ(2j)]E[Rπ(2j−1)(0)|Xπ(2j−1)]
)

P→ E[E[Yi(1)Ri(1)|Xi]E[Ri(0)|Xi]] (10)

and

1

n

∑
1≤j≤n/2

(
E[Yπ(2j−1)(0)Rπ(2j−1)(0)|Xπ(2j−1)]E[Rπ(2j)(1)|Xπ(2j)]

+ E[Yπ(2j)(0)Rπ(2j)(0)|Xπ(2j)]E[Rπ(2j−1)(1)|Xπ(2j−1)]
)

P→ E[E[Yi(0)Ri(0)|Xi]E[Ri(1)|Xi]] . (11)

Moreover, it can be shown using similar arguments to those in the proof of Lemma S.1.6 of Bai et al.

(2021) that ∣∣∣Cn − E[Cn|X(n)]
∣∣∣ P→ 0 , (12)

and hence by combining (10)-(12) we obtain that

Cn
P→ [E[Yi(1)Ri(1)|Xi]E[Ri(0)|Xi]] + E[E[Yi(0)Ri(0)|Xi]E[Ri(1)|Xi]] . (13)

The conclusion then follows from (9), (13), as well as the continuous mapping theorem.

A.2 Proof of Theorem 3.2

First we argue that θ̂n
P→ θobs. Note that

θ̂n =

∑
1≤i≤n Yi(1)Ri(1)Di∑

1≤i≤n Ri(1)Di
−
∑

1≤i≤n Yi(0)Ri(0)(1−Di)∑
1≤i≤n Ri(0)(1−Di)

.
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By Lemma B.3 in Bugni et al. (2018),

1

n

∑
1≤i≤n

Yi(1)Ri(1)Di
P→ νE[Yi(1)Ri(1)] ,

where we note that an inspection of their proof shows that Assumption 3.4(b) is sufficient to establish

their result. Similarly,

1

n

∑
1≤i≤n

Ri(1)Di
P→ νE[Ri(1)] ,

1

n

∑
1≤i≤n

Yi(0)Ri(0)(1−Di)
P→ (1− ν)E[Yi(0)Ri(0)] ,

1

n

∑
1≤i≤n

Ri(0)Di
P→ (1− ν)E[Ri(0)] .

Hence the result follows by the continuous mapping theorem. Next we argue that θ̂sfen
P→ θsfe. To that

end, write θ̂sfen as

θ̂sfen =

∑
1≤i≤n RiD̃iYi∑
1≤i≤n RiD̃2

i

,

where D̃i is the projection of Di on the strata indicators, i.e., D̃i = Di − n1(Si)/n(Si), and

n1(Si)

n(Si)
=
∑
s∈S

I{Si = s}n1(s)

n(s)
,

for

n1(s) =
∑

1≤i≤n

RiDiI{Si = s}, n(s) =
∑

1≤i≤n

RiI{Si = s} .

By Lemma B.3 in Bugni et al. (2018) and the continuous mapping theorem, we have

n1(s)

n(s)
=

1
n

∑
1≤i≤n RiDiI{Si = s}

1
n

∑
1≤i≤n RiI{Si = s}

P−→ νE[Ri(1)I{Si = s}]
νE[Ri(1)I{Si = s}] + (1− ν)E[Ri(0)I{Si = s}]

=
νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]
.

Similarly,

1

n

∑
1≤i≤n

RiD̃iYi

=
1

n

∑
1≤i≤n

RiDiYi −
∑
s∈S

1

n

∑
1≤i≤n

I{Si = s}RiYi
νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]

+
∑
s∈S

1

n

∑
1≤i≤n

RiYiI{Si = s}
(

νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]
− n1(s)

n(s)

)
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P−→ νE[Ri(1)Yi(1)]−
∑
s∈S

(νE[Ri(1)Yi(1)I{Si = s}] + (1− ν)E[Ri(0)Yi(0)I{Si = s}])

× νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]

= νE[Ri(1)Yi(1)]−
∑
s∈S

p(s)(νE[Ri(1)Yi(1)|Si = s] + (1− ν)E[Ri(0)Yi(0)|Si = s])

× νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]

= νE[Ri(1)Yi(1)]

− E

[
(νE[Ri(1)Yi(1)|Si] + (1− ν)E[Ri(0)Yi(0)|Si])

νE[Ri(1)|Si]

νE[Ri(1)|Si] + (1− ν)E[Ri(0)|Si]

]
= ν(1− ν)E

[
E[Ri(1)Yi(1)|Si]E[Ri(0)|Si]− E[Ri(0)Yi(0)|Si]E[Ri(1)|Si]

νE[Ri(1)|Si] + (1− ν)E[Ri(0)|Si]

]
,

where in the last equality we used the fact that E[Ri(1)Yi(1)] = E[E[Ri(1)Yi(1)|Si]]. Also note that

1

n

∑
1≤i≤n

RiD̃
2
i

=
1

n

∑
1≤i≤n

RiD̃i

(
Di −

n1(Si)

n(Si)

)

=
1

n

∑
1≤i≤n

Ri

(
1− n1(Si)

n(Si)

)
Di

=
1

n

∑
1≤i≤n

RiDi −
∑
s∈S

n1(s)

n(s)

1

n

∑
1≤i≤n

RiDiI{Si = s}

P→ νE[Ri(1)]−
∑
s∈S

p(s)νE[Ri(1)|Si = s]
νE[Ri(1)|Si = s]

νE[Ri(1)|Si = s] + (1− ν)E[Ri(0)|Si = s]

= νE[Ri(1)]− νE

[
E[Ri(1)|Si]

νE[Ri(1)|Si]

νE[Ri(1)|Si] + (1− ν)E[Ri(0)|Si]

]
= ν(1− ν)E

[
E[Ri(1)|Si]E[Ri(0)|Si]

νE[Ri(1)|Si] + (1− ν)E[Ri(0)|Si]

]
,

where the second equality follows from
∑

1≤i≤n RiD̃i
n1(Si)
n(Si)

= 0, which is derived as follows:

∑
1≤i≤n

RiD̃i
n1(Si)

n(Si)
=
∑

1≤i≤n

RiD̃i

∑
s∈S

I{Si = s}n1(s)

n(s)
=
∑
s∈S

n1(s)

n(s)

∑
1≤i≤n

RiD̃iI{Si = s}

=
∑
s∈S

n1(s)

n(s)

∑
1≤i≤n

RiDiI{Si = s} −
∑
s∈S

n1(s)

n(s)

∑
1≤i≤n

RiI{Si = s}n1(Si)

n(Si)

=
∑
s∈S

n1(s)

n(s)
n1(s)−

∑
s∈S

n1(s)

n(s)

∑
1≤i≤n

RiI{Si = s}
∑
k∈S

I{Si = k}n1(k)

n(k)

=
∑
s∈S

n1(s)
2

n(s)
−
∑
s∈S

n1(s)

n(s)

∑
1≤i≤n

RiI{Si = s}n1(s)

n(s)
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=
∑
s∈S

n1(s)
2

n(s)
−
∑
s∈S

n1(s)

n(s)
n(s)

n1(s)

n(s)
= 0 .

The conclusion then follows from the continuous mapping theorem.

A.3 The Limiting Distribution of θ̂n

Theorem A.1. Suppose Q satisfies Assumption 2.1 (as well as E[Y 2
i (d)] < ∞) and Assumption

3.2 (as well as E[Y 2
i (d)Ri(d)|Xi = x] is Lipschitz for d ∈ {0, 1}), and the treatment assignment

mechanism satisfies Assumptions 3.1, 3.3 as well as

1

n

∑
1≤j≤n

||Xπ(2j−1) −Xπ(2j)||2
P→ 0 .

Then, as n → ∞,
√
n(θ̂n − θ(Q))

d→ N(0, ς2mp) ,

where

ς2mp = Var[Ỹi(1)] + Var[Ỹi(0)]−
1

2
E[E[Ỹi(1) + Ỹi(0)|Xi]

2]

and

Ỹi(d) =
Ri(d)

E[Ri(d)]

(
Yi(d)−

E[Yi(d)Ri(d)]

E[Ri(d)]

)
for d ∈ {0, 1}.

Remark A.1. Following arguments similar to those in Bai et al. (2023), we can construct a consistent

estimator of ς2mp. To that end, consider the observed adjusted outcome defined as:

Ŷi =
Ri

1
n

∑
1≤j≤2n RjI{Dj = Di}

(
Yi −

1
n

∑
1≤j≤2n YjI{Dj = Di}Rj

1
n

∑
1≤j≤2n I{Dj = Di}Rj

)
,

We then propose the following variance estimator:

v̂2n = τ̂2n − 1

2
λ̂2
n , (14)

where

τ̂2n =
1

n

∑
1≤j≤n

(
Ŷπ(2j) − Ŷπ(2j−1)

)2
λ̂2
n =

2

n

∑
1≤j≤⌊n/2⌋

(
Ŷπ(4j−3) − Ŷπ(4j−2)

)(
Ŷπ(4j−1) − Ŷπ(4j)

)
(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

It follows from similar arguments to those used in Bai et al. (2023) that under appropriate assumptions

v̂2n
P→ ς2mp.
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Proof of Theorem A.1. To begin, note

θ̂n =
1
n

∑
1≤i≤2n Yi(1)Ri(1)Di

1
n

∑
1≤i≤2n Ri(1)Di

−
1
n

∑
1≤i≤2n Yi(0)Ri(0)(1−Di)

1
n

∑
1≤i≤2n Ri(0)(1−Di)

.

Next, note by Assumption 3.1 that

√
n
( 1
n

∑
1≤i≤2n

Yi(1)Ri(1)Di − E[Yi(1)Ri(1)]
)
=

1√
n

∑
1≤i≤2n

(Yi(1)Ri(1)Di − E[Yi(1)Ri(1)]Di)

and similarly for the other three terms. The desired conclusion then follows from Lemma A.1 together

with an application of the delta method. In particular, for g(x, y, z, w) = x
y − z

w , observe that

θ̂n = g

 1

n

∑
1≤i≤2n

Yi(1)Ri(1)Di,
1

n

∑
1≤i≤2n

Ri(1)Di,
1

n

∑
1≤i≤2n

Yi(0)Ri(0)(1−Di),
1

n

∑
1≤i≤2n

Ri(0)(1−Di)


and the Jacobian is

Dg(x, y, z, w) =
(1
y
,− x

y2
,− 1

w
,
z

w2

)
.

Note by the laws of total variance and total covariance that V in Lemma A.1 is symmetric with entries

V11 = Var[Yi(1)Ri(1)]−
1

2
Var[E[Yi(1)Ri(1)|Xi]]

V12 = Cov[Yi(1)Ri(1), Ri(1)]−
1

2
Cov[E[Yi(1)Ri(1)|Xi], E[Ri(1)|Xi]]

V13 =
1

2
Cov[E[Yi(1)Ri(1)|Xi], E[Yi(0)Ri(0)|Xi]]

V14 =
1

2
Cov[E[Yi(1)Ri(1)|Xi], E[Ri(0)|Xi]]

V22 = Var[Ri(1)]−
1

2
Var[E[Ri(1)|Xi]]

V23 =
1

2
Cov[E[Ri(1)|Xi], E[Yi(0)Ri(0)|Xi]]

V24 =
1

2
Cov[E[Ri(1)|Xi], E[Ri(0)|Xi]]

V33 = Var[Yi(0)Ri(0)]−
1

2
Var[E[Yi(0)Ri(0)|Xi]]

V34 = Cov[Yi(0)Ri(0), Ri(0)]−
1

2
Cov[E[Yi(0)Ri(0)|Xi], E[Ri(0)|Xi]]

V44 = Var[Ri(0)]−
1

2
Var[E[Ri(0)|Xi]] .

The conclusion of the theorem then follows from direct calculation.

Lemma A.1. Suppose Q satisfies Assumption 2.1 (as well as E[Y 2
i (d)] < ∞) and Assumption 3.2 (as

well as E[Y 2
i (d)Ri(d)|Xi = x] is Lipschitz for d ∈ {0, 1}), and the treatment assignment mechanism
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satisfies Assumptions 3.1, 3.3 as well as

1

n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥2
P→ 0 . (15)

Define

LYA1
n =

1√
n

∑
1≤i≤2n

(Yi(1)Ri(1)Di − E[Yi(1)Ri(1)]Di)

LA1
n =

1√
n

∑
1≤i≤2n

(Ri(1)Di − E[Ri(1)]Di)

LYA0
n =

1√
n

∑
1≤i≤2n

(Yi(0)Ri(0)(1−Di)− E[Yi(0)Ri(0)](1−Di))

LA0
n =

1√
n

∑
1≤i≤2n

(Ri(0)(1−Di)− E[Ri(0)](1−Di)) .

Then, as n → ∞,

(LYA1
n ,LA1

n ,LYA0
n ,LA0

n )′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 =

(
V1

1 0

0 V0
1

)

V1
1 =

(
E[Var[Yi(1)Ri(1)|Xi]] E[Cov[Yi(1)Ri(1), Ri(1)|Xi]]

E[Cov[Yi(1)Ri(1), Ri(1)|Xi]] E[Var[Ri(1)|Xi]]

)

V0
1 =

(
E[Var[Yi(0)Ri(0)|Xi]] E[Cov[Yi(0)Ri(0), Ri(0)|Xi]]

E[Cov[Yi(0)Ri(0), Ri(0)|Xi]] E[Var[Ri(0)|Xi]]

)

V2 =
1

2
Var[(E[Yi(1)Ri(1)|Xi], E[Ri(1)|Xi], E[Yi(0)Ri(0)|Xi], E[Ri(0)|Xi])

′] .

Proof of Lemma A.1. Note

(LYA1
n ,LA1

n ,LYA0
n ,LA0

n ) = (LYA1
1,n ,LA1

1,n,LYA0
1,n ,LA0

1,n) + (LYA1
2,n ,LA1

2,n,LYA0
2,n ,LA0

2,n) ,

where

LYA1
1,n =

1√
n

∑
1≤i≤2n

(Yi(1)Ri(1)Di − E[Yi(1)Ri(1)Di|X(n), D(n)])
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LYA1
2,n =

1√
n

∑
1≤i≤2n

(E[Yi(1)Ri(1)Di|X(n), D(n)]− E[Yi(1)Ri(1)]Di)

and similarly for the rest. Next, note (LYA1
1,n ,LA1

1,n,LYA0
1,n ,LA0

1,n), n ≥ 1 is a triangular array of normalized

sums of random vectors. We will apply the Lindeberg central limit theorem for random vectors,

i.e., Proposition 2.27 of van der Vaart (1998), to this triangular array. Conditional on X(n), D(n),

(LYA1
1,n ,LA1

1,n) ⊥⊥ (LYA0
1,n ,LA0

1,n). Moreover, it follows from Qn = Q2n and Assumption 3.1 that

Var

[(
LYA1
1,n

LA1
1,n

)∣∣∣∣∣X(n), D(n)

]

=

(
1
n

∑
1≤i≤2n Var[Yi(1)Ri(1)|Xi]Di

1
n

∑
1≤i≤2n Cov[Yi(1)Ri(1), Ri(1)|Xi]Di

1
n

∑
1≤i≤2n Cov[Yi(1)Ri(1), Ri(1)|Xi]Di

1
n

∑
1≤i≤2n Var[Ri(1)|Xi]Di

)
.

For the upper left component, we have

1

n

∑
1≤i≤2n

Var[Yi(1)Ri(1)|Xi]Di =
1

n

∑
1≤i≤2n

E[Y 2
i (1)Ri(1)|Xi]Di −

1

n

∑
1≤i≤2n

E[Yi(1)Ri(1)|Xi]
2Di .

(16)

Note

1

n

∑
1≤i≤2n

E[Y 2
i (1)Ri(1)|Xi]Di

=
1

2n

∑
1≤i≤2n

E[Y 2
i (1)Ri(1)|Xi] +

1

2

( 1
n

∑
1≤i≤2n:Di=1

E[Y 2
i (1)Ri(1)|Xi]

− 1

n

∑
1≤i≤2n:Di=0

E[Y 2
i (1)Ri(1)|Xi]

)
.

It follows from the weak law of large numbers, the application of which is permitted by E[Y 2
i (1)] < ∞

and the fact that Ri(1) ∈ {0, 1}, that

1

2n

∑
1≤i≤2n

E[Y 2
i (1)Ri(1)|Xi]

P→ E[Y 2
i (1)Ri(1)] .

On the other hand, it follows from Assumption 3.2 and 3.3 that∣∣∣ 1
n

∑
1≤i≤2n:Di=1

E[Y 2
i (1)Ri(1)|Xi]−

1

n

∑
1≤i≤2n:Di=0

E[Y 2
i (1)Ri(1)|Xi]

∣∣∣
≤ 1

n

∑
1≤j≤n

|E[Y 2
π(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)]− E[Y 2

π(2j)(1)Aπ(2j)(1)|Xπ(2j)]|

≲
1

n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥ = oP (1) .
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Therefore,
1

n

∑
1≤i≤2n

E[Y 2
i (1)Ri(1)|Xi]Di

P→ E[Y 2
i (1)Ri(1)] .

Meanwhile,

1

n

∑
1≤i≤2n

E[Yi(1)Ri(1)|Xi]
2Di

=
1

2n

∑
1≤i≤2n

E[Yi(1)Ri(1)|Xi]
2 +

1

2

( 1
n

∑
1≤i≤2n:Di=1

E[Yi(1)Ri(1)|Xi]
2

− 1

n

∑
1≤i≤2n:Di=0

E[Yi(1)Ri(1)|Xi]
2
)
.

Jensen’s inequality implies E[E[Yi(1)Ri(1)|Xi]
2] ≤ E[Y 2

i (1)Ri(1)] < E[Y 2
i (1)] < ∞, so it follows from

the weak law of large numbers as above that

1

2n

∑
1≤i≤2n

E[Yi(1)Ri(1)|Xi]
2 P→ E[E[Yi(1)Ri(1)|Xi]

2] .

Next,∣∣∣ 1
n

∑
1≤i≤2n:Di=1

E[Yi(1)Ri(1)|Xi]
2 − 1

n

∑
1≤i≤2n:Di=0

E[Yi(1)Ri(1)|Xi]
2
∣∣∣

≤ 1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)]− E[Yπ(2j)(1)Aπ(2j)(1)|Xπ(2j)]|

× |E[Yπ(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)] + E[Yπ(2j)(1)Aπ(2j)(1)|Xπ(2j)]|

≲
( 1
n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥2
)1/2

×
( 1
n

∑
1≤j≤n

|E[Yπ(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)] + E[Yπ(2j)(1)Aπ(2j)(1)|Xπ(2j)]|2
)1/2

≲
( 1
n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥2
)1/2

×
( 1
n

∑
1≤j≤n

(|E[Yπ(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)]|2 + |E[Yπ(2j)(1)Aπ(2j)(1)|Xπ(2j)]|2)
)1/2

≤
( 1
n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥2
)1/2( 1

n

∑
1≤i≤2n

E[Yi(1)Ri(1)|Xi]
2
)1/2

= oP (1) ,

where the first inequality follows by inspection, the second follows from Assumption 3.2 and the

Cauchy-Schwarz inequality, the third follows from (a+ b)2 ≤ 2a2 + 2b2, the last follows by inspection

again, and the convergence in probability follows from (15). Therefore, it follows from (16) that

1

n

∑
1≤i≤2n

Var[Yi(1)Ri(1)|Xi]Di
P→ E[Var[Yi(1)Ri(1)|Xi]] .
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Similar arguments imply that

Var

[(
LYA1
1,n

LA1
1,n

)∣∣∣∣∣X(n), D(n)

]
P→ V1

1 .

Similarly,

Var

[(
LYA0
1,n

LA0
1,n

)∣∣∣∣∣X(n), D(n)

]
P→ V0

1 .

If E[Var[Yi(1)Ri(1)|Xi]] = E[Var[Ri(1)|Xi]] = E[Var[Yi(0)Ri(0)|Xi]] = E[Var[Ri(0)|Xi]] = 0, then it

follows from Markov’s inequality conditional on X(n) and D(n), and the fact that probabilities are

bounded and hence uniformly integrable, that (LYA1
1,n ,LA1

1,n,LYA0
1,n ,LA0

1,n)
P→ 0. Otherwise, it follows

from similar arguments to those in the proof of Lemma S.1.5 of Bai et al. (2021) that

ρ(L((LYA1
1,n ,LA1

1,n,LYA0
1,n ,LA0

1,n)
′|X(n), D(n)), N(0,V1))

P→ 0 , (17)

where L denotes the distribution and ρ is any metric that metrizes weak convergence.

Next, we study (LYA1
2,n ,LA1

2,n,LYA0
2,n ,LA0

2,n). It follows from Qn = Q2n and Assumption 3.1 that


LYA1
2,n

LA1
2,n

LYA0
2,n

LA0
2,n

 =


1√
n

∑
1≤i≤2n Di(E[Yi(1)Ri(1)|Xi]− E[Yi(1)Ri(1)])

1√
n

∑
1≤i≤2n Di(E[Ri(1)|Xi]− E[Ri(1)])

1√
n

∑
1≤i≤2n(1−Di)(E[Yi(0)Ri(0)|Xi]− E[Yi(0)Ri(0)])

1√
n

∑
1≤i≤2n(1−Di)(E[Ri(0)|Xi]− E[Ri(0)])

 .

For LYA1
2,n , note it follows from Assumptions 3.1, 3.2 and (15) that

Var[LYA1
2,n |X(n)] =

1

4n

∑
1≤j≤n

(E[Yπ(2j−1)(1)Aπ(2j−1)(1)|Xπ(2j−1)]− E[Yπ(2j)(1)Aπ(2j)(1)|Xπ(2j)])
2

≲
1

n

∑
1≤j≤n

∥Xπ(2j−1) −Xπ(2j)∥2
P→ 0 .

Therefore, it follows from Markov’s inequality conditional on X(n) and D(n), and the fact that prob-

abilities are bounded and hence uniformly integrable, that

LYA1
2,n = E[LYA1

2,n |X(n)] + oP (1) .
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Similarly,


LYA1
2,n

LA1
2,n

LYA0
2,n

LA0
2,n

 =


1

2
√
n

∑
1≤i≤2n(E[Yi(1)Ri(1)|Xi]− E[Yi(1)Ri(1)])

1
2
√
n

∑
1≤i≤2n(E[Ri(1)|Xi]− E[Ri(1)])

1
2
√
n

∑
1≤i≤2n(E[Yi(0)Ri(0)|Xi]− E[Yi(0)Ri(0)])

1
2
√
n

∑
1≤i≤2n(E[Ri(0)|Xi]− E[Ri(0)])

+ oP (1) .

It then follows from Assumption 2.1and the central limit theorem that

(LYA1
2,n ,LA1

2,n,LYA0
2,n ,LA0

2,n)
′ d→ N(0,V2) .

Because (17) holds and (LYA1
2,n ,LA1

2,n,LYA0
2,n ,LA0

2,n) is deterministic conditional on X(n), D(n), the con-

clusion of the theorem follows from Lemma S.1.3 in Bai et al. (2021).

A.4 A Numerical Example

Let X ∼ N(0, 1) and ϵ = (ϵY (1), ϵY (0), ϵR(1), ϵR(0))
′ ∼ N(0,Σ), where the diagonal elements of Σ

are 1 and all off-diagonal elements are −0.3. Suppose for d ∈ {0, 1},

Y (d) = µd(X) + ϵY (d)

R(d) = I{ϵR(d) ≤ νd(X)} ,

with µd(x) and νd(x) specified below. In the following two examples, the values of θ can be calculated

by hand, and the values of θobs and θdrop are computed via simulation with n = 106 random draws.

1. µ1(x) = 2x, µ0(x) = x3, ν1(x) = x, ν0(x) = x2. In this example, θ = 0, θobs ≈ 1.17,

θdrop ≈ −0.50.

2. µ1(x) = 2x, µ0(x) = x, ν1(x) = x, ν0(x) = x. In this example, θ = 0, θobs ≈ 0.56, θdrop ≈ 0.86.
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A.5 Additional Details for Empirical Survey in Section 4.2

Table 3: Additional notes about each paper used in Figure 1

Paper Table Replicated Additional Notes

Dhar et al. (2022) Table 2: (1), (2) and (3) Original specification features controls. Orig-

inal estimates do not include strata fixed-

effects.

Carter et al. (2021) Figure 2: left panel (“Direct

impact on treatment group”)

Original specification features controls. Orig-

inal estimates include strata fixed-effects. We

reported both “During” and “After” esti-

mates.

Casaburi and Reed

(2022)

Table 2: (1) Original specification does not feature con-

trols. Original estimate includes strata fixed-

effects.

Abebe et al. (2021) Table 2, Table 3 (Column 1) Original specification does not feature con-

trols. Original estimates include strata fixed-

effects.

Hjort et al. (2021) Online Appendix Table A.11:

(1)

Original specification does not feature con-

trols. Original estimate does not include

strata fixed-effects. This is an intent-to-treat

specification.

Romero et al. (2020) Table 3: (4) Original specification does not feature con-

trols. Original estimates include pair fixed-

effects. These are intent-to-treat specifica-

tions.

Attanasio et al. (2020) Table 4: Second Column Original specification features controls. Orig-

inal estimate does not include strata fixed-

effects. The first column of Table 4 is esti-

mated using a probit regression and thus is

not reproduced.

Notes: For each paper considered in Section 4.2, we list the corresponding table/figure and specification(s) replicated

in the second column. We include relevant notes for each application in the third column.

A.6 Details for Equation (6)

Let θ̃dropn denote the OLS estimator of θdrop in (6) using only observations with Ri = 1. By construc-

tion, the jth entry of the OLS estimator of the projection coefficient of Di on the pair fixed effects is
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given by

 ∑
1≤i≤n:Ri=1

I{i ∈ {π(2j − 1), π(2j)}

−1 ∑
1≤i≤n:Ri=1

DiI{i ∈ {π(2j − 1), π(2j)}} . (18)

Let D̃i denote the residual from the projection of Di on the pair fixed effects. Fix 1 ≤ j ≤ n. If

Rπ(2j−1) = Rπ(2j) = 1, then it follows from (18) that

D̃π(2j) =
1

2

(
Dπ(2j) −Dπ(2j−1)

)
,

D̃π(2j−1) =
1

2

(
Dπ(2j−1) −Dπ(2j)

)
.

Next suppose the jth pair contains only one attrited unit. Without loss of generality, assume

Rπ(2j−1) = 0 and Rπ(2j) = 1. It then follows from (18) that

D̃π(2j) = Dπ(2j) −Dπ(2j) = 0 .

By an application of the Frisch-Waugh-Lovell theorem we can thus conclude that θ̃dropn = θ̂dropn , as

desired.

A.7 Relevant Excerpts from Referenced Sources

Donner and Klar (2000) chapter 3, page 40:

“A final disadvantage of the matched pair design is that the loss to follow-up of a single cluster

in a pair implies that both clusters in that pair must effectively be discarded from the trial, at least

with respect to testing the effect of intervention. This problem [...] clearly does not arise if there is

some replication of clusters within each combination of intervention and stratum.”

King et al. (2007) page 490:

“The key additional advantage of the matched pair design from our perspective is that it enables

us to protect ourselves, to a degree, from selection bias that could otherwise occur with the loss of

clusters. In particular, if we lose a cluster for a reason related to one or more of the variables we

matched on [...] then no bias would be induced for the remaining clusters. That is, whether we delete

or impute the remaining member of the pair that suffered a loss of a cluster under these circumstances,

the set of all remaining pairs in the study would still be as balanced—matched on observed background

characteristics and randomized within pairs—as the original full data set. Thus, any variable we can

measure and match on when creating pairs removes a potential for selection bias if later on we lose a

cluster due to a reason related to that variable. [...] Classical randomization, which does not match

on any variables, lacks this protective property.”
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Bruhn and McKenzie (2009) page 209:

“King et al. (2007) emphasize one additional advantage in the context of social science experiments

when the matched pairs occur at the level of a community, village, or school, which is that it provides

partial protection against political interference or drop-out. If a unit drops out of the study [...] its

pair unit can also be dropped from the study, while the set of remaining pairs will still be as balanced

as the original dataset. In contrast, in a pure randomized experiment, if even one unit drops out, it

is no longer guaranteed that the treatment and control groups are balanced, on average.”

Glennerster and Takavarasha (2013) chapter 4, page 159:

“In paired matching, for example, if we lose one of the units in the pair [...] and we include a

dummy for the stratum, essentially we have to drop the other unit in the pair from the analysis. [...]

Some evaluators have mistakenly seen this as an advantage of pairing [...] But in fact if we drop the

pair we have just introduced even more attrition bias. [...] Our suggestion is that if there is a risk of

attrition [...] use strata that have at least four units rather than pairwise randomization.”
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