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A B S T R A C T

This paper studies inference for the average treatment effect (ATE) in experiments in which
treatment status is determined according to ‘‘matched pairs’’ and it is additionally desired to
adjust for observed, baseline covariates to gain further precision. By a ‘‘matched pairs’’ design,
we mean that units are sampled i.i.d. from the population of interest, paired according to
observed, baseline covariates, and finally, within each pair, one unit is selected at random
for treatment. Importantly, we presume that not all observed, baseline covariates are used in
determining treatment assignment. We study a broad class of estimators based on a ‘‘doubly
robust’’ moment condition that permits us to study estimators with both finite-dimensional
and high-dimensional forms of covariate adjustment. We find that estimators with finite-
dimensional, linear adjustments need not lead to improvements in precision relative to the
unadjusted difference-in-means estimator. This phenomenon persists even if the adjustments
interact with treatment; in fact, doing so leads to no changes in precision. However, gains in
precision can be ensured by including fixed effects for each of the pairs. Indeed, we show that
this adjustment leads to the minimum asymptotic variance of the corresponding ATE estimator
among all finite-dimensional, linear adjustments. We additionally study an estimator with a
regularized adjustment, which can accommodate high-dimensional covariates. We show that
this estimator leads to improvements in precision relative to the unadjusted difference-in-means
estimator and also provides conditions under which it leads to the ‘‘optimal’’ nonparametric,
covariate adjustment. A simulation study confirms the practical relevance of our theoretical
analysis, and the methods are employed to reanalyze data from an experiment using a ‘‘matched
pairs’’ design to study the effect of macroinsurance on microenterprise.

1. Introduction

This paper studies inference for the average treatment effect in experiments in which treatment status is determined according
to ‘‘matched pairs’’. By a ‘‘matched pairs’’ design, we mean that units are sampled i.i.d. from the population of interest, paired
according to observed, baseline covariates and finally, within each pair, one unit is selected at random for treatment. This method
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is used routinely in all parts of the sciences. Indeed, commands to facilitate its implementation are included in popular software
packages, such as sampsi in Stata. References to a variety of specific examples can be found, for instance, in the following surveys
f various field experiments: Donner and Klar (2000), Glennerster and Takavarasha (2013), and Rosenberger and Lachin (2015).
ee also Bruhn and McKenzie (2009), who, based on a survey of selected development economists, report that 56% of researchers
ave used such a design at some point. Bai et al. (2022) develop methods for inference for the average treatment effect in such
xperiments based on the difference-in-means estimator. In this paper, we pursue the goal of improving upon the precision of this
stimator by exploiting observed, baseline covariates that are not used in determining treatment status.

To this end, we study a broad class of estimators for the average treatment effect based on a ‘‘doubly robust’’ moment condition.
he estimators in this framework are distinguished via different ‘‘working models’’ for the conditional expectations of potential
utcomes under treatment and control given the observed, baseline covariates. Importantly, because of the double-robustness, these

‘working models’’ need not be correctly specified for the resulting estimator to be consistent. In this way, the framework permits us
o study both finite-dimensional and high-dimensional forms of covariate adjustment without imposing unreasonable restrictions on
he conditional expectations themselves. Under high-level conditions on the ‘‘working models’’ and their corresponding estimators
nd a requirement that pairs are formed so that units within pairs are suitably ‘‘close’’ in terms of the baseline covariates, we derive
he limiting distribution of the covariate-adjusted estimator of the average treatment effect. We further construct an estimator for
he variance of the limiting distribution and provide conditions under which it is consistent for this quantity.

Using our general framework, we first consider finite-dimensional, linear adjustments. For this class of estimators, our main
indings are summarized as follows. First, we find that estimators with such adjustments are not guaranteed to be weakly more
fficient than the unadjusted difference-in-means estimator. This finding echoes similar findings by Yang and Tsiatis (2001)
nd Tsiatis et al. (2008) in settings in which treatment is determined by i.i.d. coin flips, and Freedman (2008) in a finite population
etting in which treatment is determined according to complete randomization. See Negi and Wooldridge (2021) for a succinct
reatment of that literature. Moreover, we find that this phenomenon persists even if the adjustments are interacted with treatment.
n fact, doing so leads to no changes in precision. In this sense, our results diverge from those in settings with complete randomization
nd treated fraction one half, where adjustments based on the uninteracted and interacted linear adjustments both guarantee gains
n precision. Last, we show that estimators with both uninteracted and interacted linear adjustments with pair fixed effects are
uaranteed to be weakly more efficient than the unadjusted difference-in-means estimator.

We then use our framework to consider high-dimensional adjustments based on 𝓁1 penalization. Specifically, we first obtain
an intermediate estimator by using the LASSO to estimate the ‘‘working model’’ for the relevant conditional expectations. When
the treatment is determined according to ‘‘matched pairs’’, however, this estimator need not be more precise than the unadjusted
difference-in-means estimator. Therefore, following Cohen and Fogarty (2024), we consider, in an additional step, an estimator
based on the finite-dimensional, linear adjustment described above that uses the predicted values for the ‘‘working model’’ as the
covariates and includes fixed effects for each of the pairs. We show that the resulting estimator improves upon both the intermediate
estimator and the unadjusted difference-in-means estimator in terms of precision. Moreover, we provide conditions under which the
refitted adjustments attain the relevant efficiency bound derived by Armstrong (2022).

Concurrent with our paper, Cytrynbaum (2023) considers covariate adjustment in experiments in which units are grouped into
tuples with possibly more than two units, rather than pairs. Both our paper and Cytrynbaum (2023) find that finite-dimensional,
linear regression adjustments with pair fixed effects are guaranteed to improve precision relative to the unadjusted difference-in-
means estimator, and show that such adjustments are indeed optimal among all linear adjustments. However, Cytrynbaum (2023)
does not pursue more general forms of covariate adjustments, including the regularized adjustments described above. Such results
permit us to study nonparametric adjustments as well as high-dimensional adjustments using covariates whose dimension diverges
rapidly with the sample size.

The remainder of our paper is organized as follows. In Section 2, we describe our setup and notation. In particular, there we
describe the precise sense in which we require that units in each pair are ‘‘close’’ in terms of their baseline covariates. In Section 3,
we introduce our general class of estimators based on a ‘‘doubly robust’’ moment condition. Under certain high-level conditions on
the ‘‘working models’’ and their corresponding estimators, we derive the limiting behavior of the covariate-adjusted estimator. In
Section 4, we use our general framework to study a variety of estimators with finite-dimensional, linear covariate adjustment. In
Section 5, we use our general framework to study covariate adjustment based on regularized regression. In Section 6, we examine the
finite-sample behavior of tests based on these different estimators via a small simulation study. We find that covariate adjustment
can lead to considerable gains in precision. Finally, in Section 7, we apply our methods to reanalyze data from an experiment
using a ‘‘matched pairs’’ design to study the effect of macroinsurance on microenterprise. Proofs of all results and some details for
simulations are given in the Online Supplement.

2. Setup and notation

Let 𝑌𝑖 ∈ 𝐑 denote the (observed) outcome of interest for the 𝑖th unit, 𝐷𝑖 ∈ {0, 1} be an indicator for whether the 𝑖th unit is
treated, and 𝑋𝑖 ∈ 𝐑𝑘𝑥 and 𝑊𝑖 ∈ 𝐑𝑘𝑤 denote observed, baseline covariates for the 𝑖th unit; 𝑋𝑖 and 𝑊𝑖 will be distinguished below
through the feature that only the former will be used in determining treatment assignment. Further, denote by 𝑌𝑖(1) the potential
outcome of the 𝑖th unit if treated and by 𝑌𝑖(0) the potential outcome of the 𝑖th unit if not treated. The (observed) outcome and
potential outcomes are related to treatment status by the relationship
2

𝑌𝑖 = 𝑌𝑖(1)𝐷𝑖 + 𝑌𝑖(0)(1 −𝐷𝑖). (1)
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For a random variable indexed by 𝑖, 𝐴𝑖, it will be useful to denote by 𝐴(𝑛) the random vector (𝐴1,… , 𝐴2𝑛). Denote by 𝑃𝑛 the
distribution of the observed data 𝑍(𝑛), where 𝑍𝑖 = (𝑌𝑖, 𝐷𝑖, 𝑋𝑖,𝑊𝑖), and by 𝑄𝑛 the distribution of 𝑈 (𝑛), where 𝑈𝑖 = (𝑌𝑖(1), 𝑌𝑖(0), 𝑋𝑖,𝑊𝑖).
Note that 𝑃𝑛 is determined by (1), 𝑄𝑛, and the mechanism for determining treatment assignment. We assume throughout that 𝑈 (𝑛)

consists of 2𝑛 i.i.d. observations, i.e., 𝑄𝑛 = 𝑄2𝑛, where 𝑄 is the marginal distribution of 𝑈𝑖. We therefore state our assumptions
below in terms of assumptions on 𝑄 and the mechanism for determining treatment assignment. Indeed, we will not refer 𝑃𝑛 in the
sequel, and all operations are understood to be under 𝑄 and the mechanism for determining the treatment assignment. Our object
of interest is the average effect of the treatment on the outcome of interest, which may be expressed in terms of this notation as

𝛥(𝑄) = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]. (2)

We now describe our assumptions on 𝑄. We restrict 𝑄 to satisfy the following mild requirement:

Assumption 2.1. The distribution 𝑄 is such that

(a) 0 < 𝐸[Var[𝑌𝑖(𝑑)|𝑋𝑖]] for 𝑑 ∈ {0, 1}.
(b) 𝐸[𝑌 2

𝑖 (𝑑)] < ∞ for 𝑑 ∈ {0, 1}.
(c) 𝐸[𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥] and 𝐸[𝑌 2

𝑖 (𝑑)|𝑋𝑖 = 𝑥] are Lipschitz for 𝑑 ∈ {0, 1}.

Next, we describe our assumptions on the mechanism determining treatment assignment. To describe these assumptions more
formally, we require some further notation to define the relevant pairs of units. The 𝑛 pairs may be represented by the sets

{𝜋(2𝑗 − 1), 𝜋(2𝑗)} for 𝑗 = 1,… , 𝑛,

where 𝜋 = 𝜋𝑛(𝑋(𝑛)) is a permutation of 2𝑛 elements. Because of its possible dependence on 𝑋(𝑛), 𝜋 encompasses a broad variety of
different ways of pairing the 2𝑛 units according to the observed, baseline covariates 𝑋(𝑛). Given such a 𝜋, we assume that treatment
status is assigned as described in the following assumption:

Assumption 2.2. Treatment status is assigned so that (𝑌 (𝑛)(1), 𝑌 (𝑛)(0),𝑊 (𝑛)) ⟂⟂ 𝐷(𝑛)
|𝑋(𝑛) and, conditional on𝑋(𝑛), (𝐷𝜋(2𝑗−1), 𝐷𝜋(2𝑗)), 𝑗 =

1,… , 𝑛 are i.i.d. and each uniformly distributed over the values in {(0, 1), (1, 0)}.

Following Bai et al. (2022), our analysis will additionally require some discipline on how pairs are formed. Let ‖ ⋅ ‖2 denote the
Euclidean norm. We will require that units in each pair are ‘‘close’’ in the sense described by the following assumption:

Assumption 2.3. The pairs used in determining treatment status satisfy
1
𝑛

∑

1≤𝑗≤𝑛
‖𝑋𝜋(2𝑗) −𝑋𝜋(2𝑗−1)‖

𝑟
2
𝑃
→ 0

or 𝑟 ∈ {1, 2}.

It will at times be convenient to require further that units in consecutive pairs are also ‘‘close’’ in terms of their baseline covariates.
ne may view this requirement, which is formalized in the following assumption, as ‘‘pairing the pairs’’ so that they are ‘‘close’’ in

erms of their baseline covariates.

ssumption 2.4. The pairs used in determining treatment status satisfy
1
𝑛

∑

1≤𝑗≤⌊ 𝑛2 ⌋

‖𝑋𝜋(4𝑗−𝑘) −𝑋𝜋(4𝑗−𝓁)‖
2
2
𝑃
→ 0

for any 𝑘 ∈ {2, 3} and 𝓁 ∈ {0, 1}.

Bai et al. (2022) provide results to facilitate constructing pairs satisfying Assumptions 2.3–2.4 under weak assumptions on 𝑄.
In particular, given pairs satisfying Assumption 2.3, it is frequently possible to ‘‘re-order’’ them so that Assumption 2.4 is satisfied.
See Theorem 4.3 in Bai et al. (2022) for further details. As in Bai et al. (2022), we highlight the fact that Assumption 2.4 will only
be used to enable consistent estimation of relevant variances.

Remark 2.1. Under this setup, Bai et al. (2022) consider the unadjusted difference-in-means estimator

𝛥unadj𝑛 = 1
𝑛

∑

1≤𝑖≤2𝑛
𝐷𝑖𝑌𝑖 −

1
𝑛

∑

1≤𝑖≤2𝑛
(1 −𝐷𝑖)𝑌𝑖 (3)

nd show that it is consistent and asymptotically normal with limiting variance

𝜎2unadj(𝑄) =
1
2
Var[𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]] + 𝐸[Var[𝑌𝑖(1)|𝑋𝑖]] + 𝐸[Var[𝑌𝑖(0)|𝑋𝑖]].

We note that 𝛥unadj𝑛 is the unadjusted estimator because it does not use information in 𝑊𝑖 in either the design or analysis stage. If
both 𝑋𝑖 and 𝑊𝑖 are used to form pairs in the ‘‘matched pairs’’ design, then the difference-in-means estimator, which we refer to as
𝛥ideal𝑛 , has limiting variance

𝜎2 (𝑄) = 1 Var[𝐸[𝑌 (1) − 𝑌 (0)|𝑋 ,𝑊 ]] + 𝐸[Var[𝑌 (1)|𝑋 ,𝑊 ]] + 𝐸[Var[𝑌 (0)|𝑋 ,𝑊 ]].
3

ideal 2 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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In this case, 𝛥ideal𝑛 achieves the efficiency bound derived by Armstrong (2022), and we can see that

𝜎2unadj(𝑄) − 𝜎
2
ideal(𝑄) =

1
2
𝐸[Var[𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]|𝑋𝑖]] ≥ 0.

or related results for parameters other than the average treatment effect, see Bai et al. (2023a). We note, however, that it is not
lways practical to form pairs using both 𝑋𝑖 and 𝑊𝑖 for two reasons. First, the covariate 𝑊𝑖 may only be collected along with the
utcome variable and therefore may not be available at the design stage. Second, the quality of pairing decreases with the dimension
f matching variables. Indeed, it is common in practice to match on some but not all baseline covariates. Such considerations
otivate our analysis below. ■

. Main results

To accommodate various forms of covariate-adjusted estimators of 𝛥(𝑄) in a single framework, it is useful to note that it follows
from Assumption 2.2 that for any 𝑑 ∈ {0, 1} and any function 𝑚𝑑,𝑛 ∶ 𝐑𝑘𝑥 × 𝐑𝑘𝑤 → 𝐑 such that 𝐸[|𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)|] < ∞,

𝐸
[

2𝐼{𝐷𝑖 = 𝑑}(𝑌𝑖 − 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)) + 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)
]

= 𝐸[𝑌𝑖(𝑑)]. (4)

We note that (4) is just the augmented inverse propensity score weighted moment for 𝐸[𝑌𝑖(𝑑)] in which the propensity score
s 1∕2 and the conditional mean model is 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖). Such a moment is also ‘‘doubly robust’’. As the propensity score for the
‘matched pairs’’ design is exactly one half, we do not require the conditional mean model to be correctly specified, i.e., 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) =
[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑖]. See, for instance, Robins et al. (1995). Intuitively, 𝑚𝑑,𝑛 is the ‘‘working model’’ which researchers use to estimate
[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑖], and can be arbitrarily misspecified because of (4). Although 𝑚𝑑,𝑛 will be identical across 𝑛 ≥ 1 for the examples

n Section 4, the notation permits 𝑚𝑑,𝑛 to depend on the sample size 𝑛 in anticipation of the high-dimensional results in Section 5.
ased on the moment condition in (4), our proposed estimator of 𝛥(𝑄) is given by

𝛥𝑛 = �̂�𝑛(1) − �̂�𝑛(0), (5)

here, for 𝑑 ∈ {0, 1},

�̂�𝑛(𝑑) =
1
2𝑛

∑

1≤𝑖≤2𝑛
(2𝐼{𝐷𝑖 = 𝑑}(𝑌𝑖 − �̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖)) + �̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖)) (6)

and �̂�𝑑,𝑛 is a suitable estimator of the ‘‘working model’’ 𝑚𝑑,𝑛 in (4).
By some simple algebra, we have1

𝛥𝑛 =
1
𝑛

∑

1≤𝑖≤2𝑛
𝐷𝑖𝑌𝑖 −

1
𝑛

∑

1≤𝑖≤2𝑛
(1 −𝐷𝑖)𝑌𝑖, (7)

where

𝑌𝑖 = 𝑌𝑖 −
1
2
(�̂�1,𝑛(𝑋𝑖,𝑊𝑖) + �̂�0,𝑛(𝑋𝑖,𝑊𝑖)). (8)

t means our regression adjusted estimator can be viewed as a difference-in-means estimator, but with the ‘‘adjusted’’ outcome 𝑌𝑖.
We require some new discipline on the behavior of 𝑚𝑑,𝑛 for 𝑑 ∈ {0, 1} and 𝑛 ≥ 1:

Assumption 3.1. The functions 𝑚𝑑,𝑛 for 𝑑 ∈ {0, 1} and 𝑛 ≥ 1 satisfy

(a) For 𝑑 ∈ {0, 1},

lim inf
𝑛→∞

𝐸

{

Var

[

𝑌𝑖(𝑑) −
1
2
(𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))

|

|

|

|

|

𝑋𝑖

]}

> 0.

(b) For 𝑑 ∈ {0, 1},

lim
𝜆→∞

lim sup
𝑛→∞

𝐸[𝑚2
𝑑,𝑛(𝑋𝑖,𝑊𝑖)𝐼{|𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)| > 𝜆}] = 0.

(c) 𝐸[𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)|𝑋𝑖 = 𝑥], 𝐸[𝑚2
𝑑,𝑛(𝑋𝑖,𝑊𝑖)|𝑋𝑖 = 𝑥], 𝐸[𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖)𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥] for 𝑑 ∈ {0, 1}, and 𝐸[𝑚1,𝑛(𝑋𝑖,𝑊𝑖)𝑚0,𝑛(𝑋𝑖,𝑊𝑖)|𝑋𝑖 =

𝑥] are Lipschitz uniformly over 𝑛 ≥ 1.

Assumption 3.1(a) is an assumption to rule out degenerate situations. Assumption 3.1(b) is a mild uniform integrability
assumption on the ‘‘working models’’. If 𝑚𝑑,𝑛(⋅) ≡ 𝑚𝑑 (⋅) for 𝑑 ∈ {0, 1}, then it is satisfied as long as 𝐸[𝑚2

𝑑 (𝑋𝑖,𝑊𝑖)] < ∞.
Assumption 3.1(c) ensures that units that are ‘‘close’’ in terms of the observed covariates are also ‘‘close’’ in terms of potential
outcomes, uniformly across 𝑛 ≥ 1.

Theorem 3.1 below establishes the limit in distribution of 𝛥𝑛. We note that the theorem depends on high-level conditions on
𝑚𝑑,𝑛(⋅) and �̂�𝑑,𝑛(⋅). In the sequel, these conditions will be verified in several examples.

1 We thank the referee for this excellent point.
4
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Theorem 3.1. Suppose 𝑄 satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assumptions 2.2–2.3, and 𝑚𝑑,𝑛(⋅) for
∈ {0, 1} and 𝑛 ≥ 1 satisfy Assumption 3.1. Further suppose �̂�𝑑,𝑛(⋅) satisfies

1
√

2𝑛

∑

1≤𝑖≤2𝑛
(2𝐷𝑖 − 1)(�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖) − 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖))

𝑃
→ 0. (9)

Then, 𝛥𝑛 defined in (5) satisfies
√

𝑛(𝛥𝑛 − 𝛥(𝑄))
𝜎𝑛(𝑄)

𝑑
→ 𝑁(0, 1), (10)

where 𝜎2𝑛 (𝑄) = 𝜎21,𝑛(𝑄) + 𝜎
2
2,𝑛(𝑄) + 𝜎

2
3,𝑛(𝑄) with

𝜎21,𝑛(𝑄) =
1
2
𝐸[Var[𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖] − (𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))|𝑋𝑖]]

𝜎22,𝑛(𝑄) =
1
2
Var[𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]]

𝜎23,𝑛(𝑄) = 𝐸[Var[𝑌𝑖(1)|𝑋𝑖,𝑊𝑖]] + 𝐸[Var[𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]].

In order to facilitate the use of Theorem 3.1 for inference about 𝛥(𝑄), we next provide a consistent estimator of 𝜎𝑛(𝑄). Define

𝜏2𝑛 = 1
𝑛

∑

1≤𝑗≤𝑛
(𝑌𝜋(2𝑗−1) − 𝑌𝜋(2𝑗))2

�̂�𝑛 =
2
𝑛

∑

1≤𝑗≤⌊ 𝑛2 ⌋

(𝑌𝜋(4𝑗−3) − 𝑌𝜋(4𝑗−2))(𝑌𝜋(4𝑗−1) − 𝑌𝜋(4𝑗))(𝐷𝜋(4𝑗−3) −𝐷𝜋(4𝑗−2))(𝐷𝜋(4𝑗−1) −𝐷𝜋(4𝑗)),

where 𝑌𝑖 is defined in (8). The variance estimator is given by

�̂�2𝑛 = 𝜏2𝑛 −
1
2
(�̂�𝑛 + 𝛥2𝑛). (11)

The variance estimator in (11), in particular its component �̂�𝑛, is analogous to the ‘‘pairs of pairs’’ variance estimator in Bai et al.
(2022). Such a variance estimator has also been used in Abadie and Imbens (2008) in a related setting. Note that it can be shown
similarly as in Remark 3.9 of Bai et al. (2022) that �̂�2𝑛 in (11) is nonnegative.

Theorem 3.2 below establishes the consistency of this estimator and its implications for inference about 𝛥(𝑄). In the statement
f the theorem, we make use of the following notation: for any scalars 𝑎 and 𝑏, [𝑎 ± 𝑏] is understood to be [𝑎 − 𝑏, 𝑎 + 𝑏].

heorem 3.2. Suppose 𝑄 satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assumptions 2.2–2.4, and 𝑚𝑑,𝑛(⋅) for
∈ {0, 1} and 𝑛 ≥ 1 satisfy Assumption 3.1. Further suppose �̂�𝑑,𝑛(⋅) satisfies (9) and

1
2𝑛

∑

1≤𝑖≤2𝑛
(�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖) − 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖))2

𝑃
→ 0. (12)

Then,
�̂�𝑛

𝜎𝑛(𝑄)
𝑃
→ 1.

ence, (10) holds with �̂�𝑛 in place of 𝜎𝑛(𝑄). In particular, for any 𝛼 ∈ (0, 1),

𝑃
{

𝛥(𝑄) ∈
[

𝛥𝑛 ± �̂�𝑛𝛷−1
(

1 − 𝛼
2

)]}

→ 1 − 𝛼,

where 𝛷 is the standard normal c.d.f.

Remark 3.1. Based on (7), it is natural to estimate 𝜎2𝑛 (𝑄) using the usual estimator of the limiting variance of the difference-in-
means estimator, i.e.,

�̂�2dif f ,𝑛 =
1
𝑛

∑

1≤𝑖≤2𝑛
𝐷𝑖

(

𝑌𝑖 −

(

1
𝑛

∑

1≤𝑖≤2𝑛
𝐷𝑖𝑌𝑖

))2

+ 1
𝑛

∑

1≤𝑖≤2𝑛
(1 −𝐷𝑖)

(

𝑌𝑖 −

(

1
𝑛

∑

1≤𝑖≤2𝑛
(1 −𝐷𝑖)𝑌𝑖

))2

.

However, it can be shown that �̂�2dif f ,𝑛 = 𝜎2dif f ,𝑛(𝑄) + 𝑜𝑃 (1), where

𝜎2dif f ,𝑛(𝑄) = Var
[

𝑌𝑖(1) −
1
2
(𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))

]

+ Var
[

𝑌𝑖(0) −
1
2
(𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))

]

.

Furthermore,

𝜎2dif f ,𝑛(𝑄) − 𝜎
2
𝑛 (𝑄) =

1
2
Var

[

𝐸[𝑌𝑖(1) + 𝑌𝑖(0) − (𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))|𝑋𝑖]
]

≥ 0,

here the inequality is strict unless
5

𝐸[𝑌𝑖(1) + 𝑌𝑖(0) − (𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))|𝑋𝑖] = 𝐸[𝑌𝑖(1) + 𝑌𝑖(0) − (𝑚1,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚0,𝑛(𝑋𝑖,𝑊𝑖))]
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with probability one. In this sense, the usual estimator of the limiting variance of the difference-in-means estimator is conserv-
ative. ■

Remark 3.2. An important and immediate implication of Theorem 3.1 is that 𝜎2𝑛 (𝑄) is minimized when

𝐸[𝑌𝑖(0) + 𝑌𝑖(1)|𝑋𝑖,𝑊𝑖] − 𝐸[𝑌𝑖(0) + 𝑌𝑖(1)|𝑋𝑖] =

𝑚0,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚1,𝑛(𝑋𝑖,𝑊𝑖) − 𝐸[𝑚0,𝑛(𝑋𝑖,𝑊𝑖) + 𝑚1,𝑛(𝑋𝑖,𝑊𝑖)|𝑋𝑖]

ith probability one. In other words, the ‘‘working model’’ for 𝐸[𝑌𝑖(0)+𝑌𝑖(1)|𝑋𝑖,𝑊𝑖] given by 𝑚0,𝑛(𝑋𝑖,𝑊𝑖)+𝑚1,𝑛(𝑋𝑖,𝑊𝑖), need only be
orrect ‘‘on average’’ over the variables that are not used in determining the pairs. For such a choice of 𝑚0,𝑛(𝑋𝑖,𝑊𝑖) and 𝑚1,𝑛(𝑋𝑖,𝑊𝑖),
2
𝑛 (𝑄) in Theorem 3.1 becomes simply

1
2
Var[𝐸[𝑌𝑖(1) − 𝑌𝑖(0)

|

|

|

𝑋𝑖,𝑊𝑖]] + 𝐸[Var[𝑌𝑖(1)|𝑋𝑖,𝑊𝑖]] + 𝐸[Var[𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]],

hich agrees with the variance obtained in Bai et al. (2022) when both 𝑋𝑖 and 𝑊𝑖 are used in determining the pairs. Such a variance
lso achieves the efficiency bound derived by Armstrong (2022). ■

emark 3.3. Following Bai et al. (2023b), it is straightforward to extend the analysis in this paper to the case with multiple
reatment arms and where treatment status is determined using a ‘‘matched tuples’’ design, but we do not pursue this further in this
aper. ■

emark 3.4. Following Bai et al. (2022), we conjecture it is possible to establish the validity of a randomization test based on the
est statistic studentized by a randomized version of (11). We emphasize that the validity of the randomization test depends crucially
n the choice of studentization in the test statistic. See, for instance, Remark 3.16 in Bai et al. (2022). Such tests have been studied
n finite-population settings with covariate adjustments by Zhao and Ding (2021). We leave a detailed analysis of randomization
ests for future work. ■

. Linear adjustments

In this section, we consider linearly covariate-adjusted estimators of 𝛥(𝑄) based on a set of regressors generated by 𝑋𝑖 ∈ 𝐑𝑘𝑥 and
𝑖 ∈ 𝐑𝑘𝑤 . To this end, define 𝜓𝑖 = 𝜓(𝑋𝑖,𝑊𝑖), where 𝜓 ∶ 𝐑𝑘𝑥 × 𝐑𝑘𝑤 → 𝐑𝑝. We impose the following assumptions on the function 𝜓 :

ssumption 4.1. The function 𝜓 is such that

(a) no component of 𝜓 is constant and 𝐸[Var[𝜓𝑖|𝑋𝑖]] is non-singular.
(b) Var[𝜓𝑖] < ∞.
(c) 𝐸[𝜓𝑖|𝑋𝑖 = 𝑥], 𝐸[𝜓𝑖𝜓 ′

𝑖 |𝑋𝑖 = 𝑥], and 𝐸[𝜓𝑖𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥] for 𝑑 ∈ {0, 1} are Lipschitz.

Assumption 4.1 is analogous to Assumption 2.1. Note, in particular, that Assumption 4.1(a) rules out situations where 𝜓𝑖 is a
unction of 𝑋𝑖 only. See Remark 4.3 for a discussion of the behavior of the covariate-adjusted estimators in such situations.

.1. Linear adjustments without pair fixed effects

Consider the following linear regression model:

𝑌𝑖 = 𝛼 + 𝛥𝐷𝑖 + 𝜓 ′
𝑖 𝛽 + 𝜖𝑖. (13)

et �̂�naive𝑛 , 𝛥naive𝑛 , and 𝛽naive𝑛 denote the OLS estimators of 𝛼, 𝛥, and 𝛽 in (13). We call these estimators naïve because the corresponding
egression adjustment is subject to Freedman’s critique and can lead to an adjusted estimator that is less efficient than the simple
ifference-in-means estimator 𝛥unadj𝑛 .

It follows from a direct calculation that

𝛥naive𝑛 = 1
𝑛

∑

1≤𝑖≤2𝑛
(𝑌𝑖 − 𝜓 ′

𝑖 𝛽
naive
𝑛 )(2𝐷𝑖 − 1).

Therefore, 𝛥naive𝑛 satisfies (5)–(6) with

�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′
𝑖 𝛽

naive
𝑛 .

Theorem 4.1 establishes (9) and (12) for a suitable choice of 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) for 𝑑 ∈ {0, 1} and, as a result, the limiting distribution
of 𝛥naive𝑛 and the validity of the variance estimator.

Theorem 4.1. Suppose 𝑄 satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumptions 2.2–2.3. Further suppose
𝜓 satisfies Assumption 4.1. Then, as 𝑛→ ∞,

̂naive 𝑃 naive −1
6

𝛽𝑛 → 𝛽 = Var[𝜓𝑖] Cov[𝜓𝑖, 𝑌𝑖(1) + 𝑌𝑖(0)].
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Moreover, (9), (12), and Assumption 3.1 are satisfied with

𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′
𝑖 𝛽

naive

for 𝑑 ∈ {0, 1} and 𝑛 ≥ 1.

Remark 4.1. Freedman (2008) studies regression adjustment based on (13) when treatment is assigned by complete randomization
instead of a ‘‘matched pairs’’ design. In such settings, Lin (2013) proposes adjustment based on the following linear regression model:

𝑌𝑖 = 𝛼 + 𝛥𝐷𝑖 + (𝜓𝑖 − �̄�𝑛)′𝛾 +𝐷𝑖(𝜓𝑖 − �̄�𝑛)′𝜂 + 𝜖𝑖, (14)

where

�̄�𝑛 =
1
2𝑛

∑

1≤𝑖≤2𝑛
𝜓𝑖.

et �̂�int𝑛 , 𝛥int𝑛 , �̂� int𝑛 , �̂�int𝑛 denote the OLS estimators for 𝛼, 𝛥, 𝛾, 𝜂 in (14). It is straightforward to show 𝛥int𝑛 satisfies (5)–(6) with

�̂�1,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − �̂�𝜓,𝑛(1))′(�̂� int𝑛 + �̂�int𝑛 )

�̂�0,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − �̂�𝜓,𝑛(0))′�̂� int𝑛 ,

here

�̂�𝜓,𝑛(𝑑) =
1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}𝜓𝑖.

It can be shown using similar arguments to those used to establish Theorem 4.1 that (9) and Assumption 3.1 are satisfied with

𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − 𝐸[𝜓𝑖])′ Var[𝜓𝑖]−1 Cov[𝜓𝑖, 𝑌𝑖(𝑑)]

for 𝑑 ∈ {0, 1} and 𝑛 ≥ 1. It thus follows by inspecting the expression for 𝜎2𝑛 (𝑄) in Theorem 3.1 that the limiting variance of 𝛥int𝑛 is
the same as that of 𝛥naive𝑛 based on (13). ■

Remark 4.2. Note that 𝛥naive𝑛 is the ordinary least squares estimator for 𝛥 in the linear regression

𝑌𝑖 − 𝜓 ′
𝑖 𝛽

naive
𝑛 = 𝛼 + 𝛥𝐷𝑖 + 𝜖𝑖.

Furthermore, Theorem 4.1 implies that its limiting variance is 𝜎2naive(𝑄), given by 𝜎2𝑛 (𝑄) in Theorem 3.1 with 𝑚𝑑 (𝑋𝑖,𝑊𝑖) = 𝜓 ′
𝑖 𝛽

naive.
he usual heteroskedasticity-robust estimator of the limiting variance of 𝛥naive𝑛 is, however, simply �̂�2dif f ,𝑛 defined in Remark 3.1 with
�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′

𝑖 𝛽
naive
𝑛 . It thus follows that �̂�2dif f ,𝑛 is conservative for 𝜎2naive(𝑄) in the sense described therein. It is, of course, possible

o estimate 𝜎2naive(𝑄) consistently using �̂�2𝑛 proposed in Theorem 3.2 with �̂�𝑑,𝑛(𝑊𝑖, 𝑋𝑖) = 𝜓 ′
𝑖 𝛽

naive
𝑛 , but 𝜎2naive(𝑄) is not guaranteed to

e smaller than the limiting variance of the unadjusted estimator, i.e., 𝜎2unadj(𝑄), so the linear adjustment without pair fixed effects
an harm the precision of the estimator. Evidence of this phenomenon is provided in our simulations in Section 6. ■

.2. Linear adjustments with pair fixed effects

Remark 4.1 implies that in ‘‘matched pairs’’ designs, including interaction terms in the linear regression does not lead to
n estimator with lower limiting variance than the one based on the linear regression without interaction terms. It is therefore
nteresting to study whether there exists a linearly covariate-adjusted estimator with lower limiting variance than the ones based
n (13) and (14) as well as the difference-in-means estimator. To that end, consider instead the following linear regression model:

𝑌𝑖 = 𝛥𝐷𝑖 + 𝜓 ′
𝑖 𝛽 +

∑

1≤𝑗≤𝑛
𝜃𝑗𝐼{𝑖 ∈ {𝜋(2𝑗 − 1), 𝜋(2𝑗)}} + 𝜖𝑖. (15)

et 𝛥pfe𝑛 , 𝛽pfe𝑛 , and �̂�𝑗,𝑛, 1 ≤ 𝑗 ≤ 𝑛 denote the OLS estimators of 𝛥, 𝛽, 𝜃𝑗 , 1 ≤ 𝑗 ≤ 𝑛 in (15), where ‘‘pfe’’ stands for pair fixed effect. It
ollows from the Frisch-Waugh-Lovell theorem that

𝛥pfe𝑛 = 1
𝑛

∑

1≤𝑖≤2𝑛
(𝑌𝑖 − 𝜓 ′

𝑖 𝛽
pfe
𝑛 )(2𝐷𝑖 − 1).

Therefore, 𝛥pfe𝑛 satisfies (5)–(6) with

�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′
𝑖 𝛽

pfe
𝑛 .

Theorem 4.2 establishes (9) and (12) for a suitable choice of 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖), 𝑑 ∈ {0, 1} and, as a result, the limiting distribution of
̂pfe and the validity of the variance estimator.
7

𝑛
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Theorem 4.2. Suppose 𝑄 satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumptions 2.2–2.3. Then, as
𝑛→ ∞,

𝛽pfe𝑛
𝑃
→ 𝛽pfe = (2𝐸[Var[𝜓𝑖|𝑋𝑖]])−1𝐸[Cov[𝜓𝑖, 𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖]].

oreover, (9), (12), and Assumption 3.1 are satisfied with

𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′
𝑖 𝛽

pfe

or 𝑑 ∈ {0, 1} and 𝑛 ≥ 1.

emark 4.3. When 𝜓 is restricted to be a function of 𝑋𝑖 only, 𝛥pfe𝑛 coincides to first order with the unadjusted difference-in-means
stimator 𝛥unadj𝑛 defined in (3). To see this, suppose further that 𝜓 is Lipschitz and that Var[𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥], 𝑑 ∈ {0, 1} are bounded.
he proof of Theorem 4.2 reveals that 𝛥pfe𝑛 and 𝛽pfe𝑛 coincide with the OLS estimators of the intercept and slope parameters in a

inear regression of (𝑌𝜋(2𝑗) − 𝑌𝜋(2𝑗−1))(𝐷𝜋(2𝑗) −𝐷𝜋(2𝑗−1)) on a constant and (𝜓𝜋(2𝑗) − 𝜓𝜋(2𝑗−1))(𝐷𝜋(2𝑗) −𝐷𝜋(2𝑗−1)). Using this observation,
t follows by arguing as in Section S.1.1 of Bai et al. (2022) that

√

𝑛(𝛥pfe𝑛 − 𝛥(𝑄)) =
√

𝑛(𝛥unadj𝑛 − 𝛥(𝑄)) + 𝑜𝑃 (1).

See also Remark 3.8 of Bai et al. (2022). ■

Remark 4.4. The regression-adjusted estimators studied in this section are also examined in Imbens and Rubin (2015) and Fogarty
(2018) in a finite population setting. Their regularity conditions, however, only permit regression adjustment using 𝑊𝑖. By contrast,
we employ a super-population framework and permit regression adjustment using 𝜓𝑖, which is a function of both 𝑊𝑖 and 𝑋𝑖. ■

Remark 4.5. Note in the expression of 𝜎2𝑛 (𝑄) in Theorem 3.1 only depends on 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖), 𝑑 ∈ {0, 1} through 𝜎21,𝑛(𝑄). With this in
mind, consider the class of all linearly covariate-adjusted estimators based on 𝜓𝑖, i.e., 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) = 𝜓 ′

𝑖 𝛽(𝑑). For this specification
f 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖), 𝑑 ∈ {0, 1},

𝜎21,𝑛(𝑄) = 𝐸[(𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖] − 𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖] − (𝜓𝑖 − 𝐸[𝜓𝑖|𝑋𝑖])′(𝛽(1) + 𝛽(0)))2].

t follows that among all such linear adjustments, 𝜎2𝑛 (𝑄) in (10) is minimized when

𝛽(1) + 𝛽(0) = 2𝛽pfe.

his observation implies that the linear adjustment with pair fixed effects, i.e., 𝛥pfe𝑛 , yields the optimal linear adjustment in the sense
f minimizing 𝜎2𝑛 (𝑄). Its limiting variance is, in particular, weakly smaller than the limiting variance of the unadjusted difference-
n-means estimator defined in (3). On the other hand, the covariate-adjusted estimators based on (13) or (14), i.e., 𝛥naive𝑛 and 𝛥int𝑛 ,
re in general not optimal among all linearly covariate-adjusted estimators based on 𝜓𝑖. In fact, the limiting variances of these two
stimators may even be larger than that of the unadjusted difference-in-means estimator. ■

emark 4.6. ‘‘Matched pairs’’ design is essentially a non-parametric way to adjust for 𝑋𝑖. Projecting 𝜓𝑖 on the pair dummies in
15) is equivalent to pair-wise demeaning, which effectively removes 𝐸[𝜓𝑖|𝑋𝑖] from 𝜓𝑖. This is key to the optimality of 𝛥pfe𝑛 over all
inearly adjusted estimators. Following the same logic, we expect that by replacing the pair dummies with sieve bases of 𝑋𝑖 in (15),
he linear regression can still effectively remove 𝐸[𝜓𝑖|𝑋𝑖] from 𝜓𝑖 so that the new adjusted estimator is asymptotically equivalent
o 𝛥pfe𝑛 , and thus, linearly optimal. ■

emark 4.7. Remark 4.2 also applies here with 𝛽naive replaced by 𝛽pfe. Even though 𝛥pfe𝑛 can be computed via OLS estimation of
15), we emphasize that the usual heteroskedascity-robust standard errors that naïvely treats the data (including treatment status)
s if it were i.i.d. need not be consistent for the limiting variance derived in our analysis. ■

emark 4.8. One can also consider the estimator based on the following linear regression model:

𝑌𝑖 = 𝛥𝐷𝑖 + (𝜓𝑖 − �̄�𝑛)′𝛾 +𝐷𝑖(𝜓𝑖 − �̂�𝜓,𝑛(1))′𝜂 +
∑

1≤𝑗≤𝑛
𝜃𝑗𝐼{𝑖 ∈ {𝜋(2𝑗 − 1), 𝜋(2𝑗)}} + 𝜖𝑖. (16)

Let 𝛥int−pfe𝑛 , �̂� int−pfe𝑛 , �̂�int−pfe𝑛 denote the OLS estimators for 𝛥, 𝛾, 𝜂 in (16). It is straightforward to show 𝛥int−pfe𝑛 satisfies (5)–(6) with

�̂�1,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − �̂�𝜓,𝑛(1))′�̂�
int−pfe
𝑛

�̂�0,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − �̂�𝜓,𝑛(0))′(�̂�
int−pfe
𝑛 − �̂� int−pfe𝑛 ).

Following similar arguments to those used in the proof of Theorem 4.1, we can establish that (9) and Assumption 3.1 are satisfied
with

𝑚1,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − 𝐸[𝜓𝑖])′𝜂int−pfe

𝑚0,𝑛(𝑋𝑖,𝑊𝑖) = (𝜓𝑖 − 𝐸[𝜓𝑖])′(𝜂int−pfe − 𝛾 int−pfe),
8
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where

𝛾 int−pfe = (𝐸[Var[𝜓𝑖|𝑋𝑖]])−1𝐸[Cov[𝜓𝑖, 𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]],

𝜂int−pfe = (𝐸[Var[𝜓𝑖|𝑋𝑖]])−1𝐸[Cov[𝜓𝑖, 𝑌𝑖(1)|𝑋𝑖]].

Because 2𝜂int−pfe−𝛾 int−pfe = 2𝛽pfe, it follows from Remark 4.5 that the limiting variance of 𝛥int−pfe𝑛 is identical to the limiting variance
of 𝛥pfe𝑛 . ■

Remark 4.9. Wu and Gagnon-Bartsch (2021) consider the covariate adjustment for paired experiments under the design-based
framework, where the covariates are treated as deterministic, and thus, the cross-sectional dependence between units in the same
pair due to the closeness of their covariates is not counted in their analysis. We differ from them by considering the sampling-
based framework in which the covariates are treated as random and the pairs are formed by matching, and thus, have an impact
on statistical inference. Under their framework, Wu and Gagnon-Bartsch (2021) point out that covariate adjustments may have a
positive or negative effect on the estimation accuracy depending on how they are estimated. This is consistent with our findings in
this section. Specifically, we show that when the regression adjustments are estimated by linear regression with pair fixed effects, the
resulting ATE estimator is guaranteed to weakly improve upon the difference-in-means estimator in terms of efficiency. However,
this improvement is not guaranteed if the adjustments are estimated without pair fixed effects. ■

Remark 4.10. If we choose 𝜓𝑖 as a set of sieve basis functions with increasing dimension, then under suitable regularity
conditions, the linear adjustments both with and without pair fixed effects achieve the same limiting variance as 𝛥ideal𝑛 , and thus, the
efficiency bound. In fact, if 𝜓𝑖 contains sieve bases, then the linear adjustment without pair fixed effects can approximate the true
specification 𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖] in the sense that 𝐸[𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖,𝑊𝑖] = 𝜓 ′

𝑖 𝛽
naive + 𝑅𝑖 and 𝐸[𝑅2

𝑖 ] = 𝑜(1). This property implies
2
1,𝑛(𝑄) in Theorem 3.1 equals zero. Similarly, the linear adjustment with pair fixed effects can approximate the true specification
[𝑌𝑖(1)+𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]−𝐸[𝑌𝑖(1)+𝑌𝑖(0)|𝑋𝑖] in the sense that 𝐸[𝑌𝑖(1)+𝑌𝑖(0)|𝑋𝑖,𝑊𝑖]−𝐸[𝑌𝑖(1)+𝑌𝑖(0)|𝑋𝑖] = �̃� ′

𝑖 𝛽
naive+ �̃�𝑖 and 𝐸[�̃�2

𝑖 ] = 𝑜(1).
his property again implies 𝜎21,𝑛(𝑄) in Theorem 3.1 equals zero. Therefore, in both cases, the adjusted estimator achieves the
inimum variance. In the next section, we consider 𝓁1-regularized adjustments which may be viewed as providing a way to choose

he relevant sieve bases in a data-driven manner. ■

. Regularized adjustments

In this section, we study covariate adjustments based on the 𝓁1-regularized linear regression. Such settings can arise if the
ovariates 𝑊𝑖 are high-dimensional or if the dimension of 𝑊𝑖 is fixed but the regressors include many sieve basis functions of 𝑋𝑖
nd 𝑊𝑖. To accommodate situations where the dimension of 𝑊𝑖 increases with 𝑛, we add a subscript and denote it by 𝑊𝑛,𝑖 instead.
et 𝑘𝑤,𝑛 denote the dimension of 𝑊𝑛,𝑖. For 𝑛 ≥ 1, let 𝜓𝑛,𝑖 = 𝜓𝑛(𝑋𝑖,𝑊𝑛,𝑖), where 𝜓𝑛 ∶ 𝐑𝑘𝑥 ×𝐑𝑘𝑤,𝑛 → 𝐑𝑝𝑛 and 𝑝𝑛 will be permitted below
o be possibly much larger than 𝑛.

In what follows, we consider a two-step method in the spirit of Cohen and Fogarty (2024). In the first step, an intermediate
stimator, 𝛥r𝑛, is obtained using (5) with a ‘‘working model’’ obtained through a 𝓁1-regularized linear regression adjustments
𝑑,𝑛(𝑋𝑖,𝑊𝑖) for 𝑑 ∈ {0, 1}. As explained further below in Theorem 5.1, when 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) is approximately correctly specified, such
n estimator is optimal in the sense that it minimizes the limiting variance in Theorem 3.1. When this is not the case, however, for
easons analogous to those put forward in Remark 4.2, it needs not to have a limiting variance weakly smaller than the unadjusted
ifference-in-means estimator. In a second step, we therefore consider an estimator by refitting a version of (15) in which the
ovariates 𝜓𝑖 are replaced by the regularized estimates of 𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑖) for 𝑑 ∈ {0, 1}. The resulting estimator, 𝛥ref it𝑛 , has the limiting
ariance weakly smaller than that of the intermediate estimator and thus remains optimal under approximately correct specification
n the same sense. Moreover, it has limiting variance weakly smaller than the unadjusted difference-in-means estimator. Wager et al.
2016) also consider high-dimensional regression adjustments in randomized experiments using LASSO. We differ from their work
y considering the ‘‘matched pairs’’ design, and more importantly, discussing when and how regularized adjustments can improve
stimation efficiency upon the difference-in-means estimator.

Before proceeding, we introduce some additional notation that will be required in our formal description of the methods. We
enote by 𝜓𝑛,𝑖,𝑙 the 𝑙th components of 𝜓𝑛,𝑖. For a vector 𝑎 ∈ 𝐑𝑘 and 0 ≤ 𝑝 ≤ ∞, recall that

‖𝑎‖𝑝 =
(

∑

1≤𝑙≤𝑘
|𝑎𝑙|

𝑝
)1∕𝑝

,

here it is understood that ‖𝑎‖0 =
∑

1≤𝑙≤𝑘 𝐼{𝑎𝑘 ≠ 0} and ‖𝑎‖∞ = sup1≤𝑙≤𝑘 |𝑎𝑙|. Using this notation, we further define

𝛯𝑛 = sup
(𝑥,𝑤)×supp(𝑋𝑖)×supp(𝑊𝑖)

‖𝜓𝑛,𝑖(𝑥,𝑤)‖∞.

For 𝑑 ∈ {0, 1}, define

(�̂�r𝑑,𝑛, 𝛽
r
𝑑,𝑛) ∈ argmin

𝑎∈𝐑,𝑏∈𝐑𝑝𝑛

1
𝑛

∑

1≤𝑖≤2𝑛∶𝐷𝑖=𝑑
(𝑌𝑖 − 𝑎 − 𝜓 ′

𝑛,𝑖𝑏)
2 + 𝜆r𝑑,𝑛‖�̂�𝑛(𝑑)𝑏‖1, (17)

here 𝜆r𝑑,𝑛 is a penalty parameter that will be disciplined by the assumptions below, �̂�𝑛(𝑑) = diag(�̂�1(𝑑),… ,
̂ 𝑝𝑛 (𝑑)) is a diagonal matrix, and �̂�𝑛,𝑙(𝑑) is the penalty loading for the 𝑙th regressor. Let 𝛥r𝑛 denote the estimator in (5) with

′ ̂r
9

�̂�𝑑,𝑛(𝑋𝑖,𝑊𝑛,𝑖) = 𝜓𝑛,𝑖𝛽𝑑,𝑛 for 𝑑 ∈ {0, 1}.
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We now proceed with the statement of our assumptions. The first assumption collects a variety of moment conditions that will
e used in our formal analysis:

ssumption 5.1.

(a) There exist nonrandom quantities (𝛼r𝑑,𝑛, 𝛽
r
𝑑,𝑛) such that with 𝜖r𝑛,𝑖(𝑑) defined as

𝜖r𝑛,𝑖(𝑑) = 𝑌𝑖(𝑑) − 𝛼r𝑑,𝑛 − 𝜓
′
𝑛,𝑖𝛽

r
𝑑,𝑛,

we have

‖𝛺𝑛(𝑑)−1𝐸[𝜓𝑛,𝑖𝜖r𝑛,𝑖(𝑑)]‖∞ + |𝐸[𝜖r𝑛,𝑖(𝑑)]| = 𝑜
(

𝜆r𝑑,𝑛
)

, (18)

where 𝛺𝑛(𝑑) = diag(𝜔𝑛,1(𝑑),… , 𝜔𝑛,𝑝𝑛 (𝑑)) and 𝜔2
𝑛,𝑙(𝑑) = Var[𝜓𝑛,𝑖,𝑙𝜖r𝑛,𝑖(𝑑)].

(b) For some 𝑞 > 2 and constant 𝐶1,

sup
𝑛≥1

max
1≤𝑙≤𝑝𝑛

𝐸[|𝜓𝑞𝑛,𝑖,𝑙||𝑋𝑖] ≤ 𝐶1,

sup
𝑛≥1

|𝜓 ′
𝑛,𝑖𝛽

r−pd
𝑑,𝑛 | ≤ 𝐶1,

sup
𝑛≥1

|𝐸[𝑌𝑖(𝑎)|𝑋𝑖,𝑊𝑛,𝑖]| ≤ 𝐶1,

with probability one.
(c) For some

̄
𝑐 and 𝑐, we require that

0 < 𝑐 ≤ lim inf
𝑛→∞

min
1≤𝑙≤𝑝𝑛

�̂�𝑛,𝑙(𝑑)∕𝜔𝑛,𝑙(𝑑) ≤ lim sup
𝑛→∞

max
1≤𝑙≤𝑝𝑛

�̂�𝑛,𝑙(𝑑)∕𝜔𝑛,𝑙(𝑑) ≤ 𝑐 < ∞. (19)

(d) For some 𝑐0, ̄
𝜎, �̄�, the following statements hold with probability one:

0 <
̄
𝜎2 ≤ lim inf

𝑛→∞
min

𝑑∈{0,1},1≤𝑙≤𝑝𝑛
𝜔2
𝑛,𝑙(𝑑) ≤ lim sup

𝑛→∞
max

𝑑∈{0,1},1≤𝑙≤𝑝𝑛
𝜔2
𝑛,𝑙(𝑑) ≤ �̄�2 <∞,

sup
𝑛≥1

max
𝑑∈{0,1}

𝐸[(𝜓 ′
𝑛,𝑖𝛽

r
𝑑,𝑛)

2] ≤ 𝑐0 < ∞,

max
𝑑∈{0,1},1≤𝑙≤𝑝𝑛

1
2𝑛

∑

1≤𝑖≤2𝑛
𝐸[𝜖4𝑛,𝑖(𝑑)|𝑋𝑖] ≤ 𝑐0 < ∞,

sup
𝑛≥1

max
𝑑∈{0,1}

𝐸[𝜖4𝑛,𝑖(𝑑)] ≤ 𝑐0 < ∞,

min
𝑑∈{0,1}

Var[𝑌𝑖(𝑑) − 𝜓 ′
𝑛,𝑖(𝛽

r
1,𝑛 + 𝛽

r
0,𝑛)∕2] ≥ ̄

𝜎2 > 0,

min
1≤𝑙≤𝑝𝑛

1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}Var[𝜓𝑛,𝑖,𝑙𝜖𝑛,𝑖(𝑑)|𝑋𝑖] ≥ ̄

𝜎2 > 0,

min
1≤𝑙≤𝑝𝑛

Var[𝐸[𝜓𝑛,𝑖,𝑙𝜖𝑛,𝑖(𝑑)|𝑋𝑖]] ≥ ̄
𝜎2 > 0.

Remark 5.1. It is instructive to note that (18) in Assumption 5.1(a) is the subgradient condition for a 𝓁1-penalized regression of
the outcome 𝑌𝑖(𝑑) on 𝜓𝑛,𝑖 when the penalty is of order 𝑜(𝜆r𝑛). Specifically, if 𝑝𝑛 ≪ 𝑛, then this condition holds automatically for the
𝛽r𝑑,𝑛 equal to the coefficients of a linear projection of 𝑌𝑖(𝑑) onto (1, 𝜓 ′

𝑛,𝑖). When 𝑝𝑛 ≫ 𝑛, but 𝐸[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑖] is approximately correctly
specified in the sense that the approximation error 𝑅𝑛,𝑖(𝑑) = 𝐸[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑖]−𝛼r𝑑,𝑛−𝜓

′
𝑛,𝑖𝛽

r
𝑑,𝑛 is sufficiently small, then (18) also holds.

However, the approximately correct specification is not necessary for (18). For example, suppose 𝑊𝑛,𝑖 = (𝑊𝑛,𝑖,1,… ,𝑊𝑛,𝑖,𝑝𝑛 ) is a 𝑝𝑛
vector of independent standard normal random variables, 𝑊𝑛,𝑖 is independent of 𝑋𝑖, 𝜓𝑛,𝑖 = (𝑋′

𝑖 ,𝑊
′
𝑛,𝑖)

′, and

𝑌𝑖(𝑑) = 𝛼r𝑑,𝑛 + 𝜓
′
𝑛,𝑖𝛽

r
𝑑,𝑛 +

𝑝𝑛
∑

𝑙=1

𝑊 2
𝑛,𝑖,𝑙 − 1
√

𝑝𝑛
+ 𝑢𝑛,𝑖(𝑑),

where 𝐸(𝑢𝑛,𝑖(𝑑)|𝑋𝑖,𝑊𝑛,𝑖) = 0. Then, Assumption 5.1(a) holds with 𝜖r𝑛,𝑖(𝑑) =
∑𝑝𝑛
𝑙=1

𝑊 2
𝑛,𝑖,𝑙−1
√

𝑝𝑛
+ 𝑢𝑛,𝑖(𝑑). We can impose a sparse restriction

n 𝛽r𝑑,𝑛 so that it further satisfies Assumption 5.3(b) below. On the other hand, the linear regression adjustment is not approximately

orrectly specified because 𝑅𝑛,𝑖(𝑑) = 𝐸(𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑛,𝑖) − (𝛼r𝑑,𝑛 + 𝜓
′
𝑛,𝑖𝛽

r
𝑑,𝑛) =

∑𝑝𝑛
𝑙=1

𝑊 2
𝑛,𝑖,𝑙−1
√

𝑝𝑛
, and we have 𝐸𝑅2

𝑛,𝑖(𝑑) = 2 ↛ 0. ■

emark 5.2. Assumption 5.1(b) and 5.1(d) are standard in the high-dimensional estimation literature; see, for instance, Belloni
t al. (2017). The last four inequalities in Assumption 5.1(d), in particular, permit us to apply the high-dimensional central limit
10

heorem in Chernozhukov et al. (2017, Theorem 2.1). ■
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Remark 5.3. The penalty loadings in Assumption 5.1(c) can be computed by an iterative procedure proposed by Belloni et al.
(2017). We provide more detail in Algorithm 5.1 below. We can then verify (19) under ‘‘matched pairs’’ designs following arguments
similar to those in Belloni et al. (2017). ■

Our analysis will, as before, also require some discipline on how pairs are formed. For this purpose, Assumption 2.3 will suffice,
but we will need an additional Lipshitz-like condition:

Assumption 5.2. For some 𝐿 > 0 and any 𝑥1 and 𝑥2 in the support of 𝑋𝑖, we have

|(𝛹 (𝑥1) − 𝛹 (𝑥2))′𝛽r𝑑,𝑛| ≤ 𝐿‖𝑥1 − 𝑥2‖2.

We next specify our restrictions on the penalty parameter 𝜆r𝑑,𝑛.

Assumption 5.3.

(a) For some 𝓁𝓁𝑛 → ∞,

𝜆r𝑑,𝑛 =
𝓁𝓁𝑛
√

𝑛
𝛷−1

(

1 − 0.1
2 log(𝑛)𝑝𝑛

)

.

(b) 𝛯2
𝑛 (log 𝑝𝑛)

7∕𝑛→ 0 and (𝓁𝓁𝑛𝑠𝑛 log 𝑝𝑛)∕
√

𝑛→ 0, where

𝑠𝑛 = max
𝑑∈{0,1}

‖𝛽r𝑑,𝑛‖0. (20)

We note that Assumption 5.3(b) permits 𝑝𝑛 to be much greater than 𝑛. It also requires sparsity in the sense that 𝑠𝑛 = 𝑜(
√

𝑛).
Finally, as is common in the analysis of 𝓁1-penalized regression, we require a ‘‘restricted eigenvalue’’ condition. This assumption

ermits us to apply Bickel et al. (2009, Lemma 4.1) and establish the error bounds for |�̂�r𝑑,𝑛−𝛼
r
𝑑,𝑛|+‖𝛽r𝑑,𝑛−𝛽

r
𝑑,𝑛‖1 and 1

𝑛
∑

1≤𝑖≤2𝑛 𝐼{𝐷𝑖 =

𝑑}
(

�̂�r𝑑,𝑛 − 𝛼
r
𝑑,𝑛 + 𝜓

′
𝑛,𝑖(𝛽

r
𝑑,𝑛 − 𝛽

r
𝑑,𝑛)

)2
.

Assumption 5.4. For some 𝜅1 > 0, 𝜅2 and 𝓁𝑛 → ∞, the following statements hold with probability approaching one:

inf
𝑑∈{0,1},𝑣∈𝐑𝑝𝑛+1∶‖𝑣‖0≤(𝑠𝑛+1)𝓁𝑛

(‖𝑣‖22)
−1𝑣′

(

1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}�̆�𝑛,𝑖�̆� ′

𝑛,𝑖

)

𝑣 ≥ 𝜅1

sup
𝑑∈{0,1},𝑣∈𝐑𝑝𝑛+1∶‖𝑣‖0≤(𝑠𝑛+1)𝓁𝑛

(‖𝑣‖22)
−1𝑣′

(

1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}�̆�𝑛,𝑖�̆� ′

𝑛,𝑖

)

𝑣 ≤ 𝜅2

inf
𝑑∈{0,1},𝑣∈𝐑𝑝𝑛+1∶‖𝑣‖0≤(𝑠𝑛+1)𝓁𝑛

(‖𝑣‖22)
−1𝑣′

(

1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}𝐸[�̆�𝑛,𝑖�̆� ′

𝑛,𝑖|𝑋𝑖]

)

𝑣 ≥ 𝜅1

sup
𝑑∈{0,1},𝑣∈𝐑𝑝𝑛+1∶‖𝑣‖0≤(𝑠𝑛+1)𝓁𝑛

(‖𝑣‖22)
−1𝑣′

(

1
𝑛

∑

1≤𝑖≤2𝑛
𝐼{𝐷𝑖 = 𝑑}𝐸[�̆�𝑛,𝑖�̆� ′

𝑛,𝑖|𝑋𝑖]

)

𝑣 ≤ 𝜅2,

here �̆�𝑛,𝑖 = (1, 𝜓 ′
𝑛,𝑖)

′.

Using these assumptions, the following theorem characterizes the behavior of 𝛥r𝑛:

heorem 5.1. Suppose 𝑄 satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumptions 2.2–2.3. Further suppose
ssumptions 5.1–5.4 hold. Then, (9), (12), and Assumption 3.1 are satisfied with �̂�𝑑,𝑛(𝑋𝑖,𝑊𝑛,𝑖) = �̂�r𝑑,𝑛 + 𝜓

′
𝑛,𝑖𝛽

r
𝑑,𝑛 and

𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑛,𝑖) = 𝛼r𝑑,𝑛 + 𝜓
′
𝑛,𝑖𝛽

r
𝑑,𝑛

or 𝑑 ∈ {0, 1} and 𝑛 ≥ 1. Denote the variance of 𝛥r𝑛 by 𝜎r,2𝑛 . If the regularized adjustment is approximately correctly specified,
.e., 𝐸[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑛,𝑖] = 𝛼r𝑑,𝑛 + 𝜓

′
𝑛,𝑖𝛽

r
𝑑,𝑛 + 𝑅𝑛,𝑖(𝑑) and max𝑑∈{0,1} 𝐸[𝑅2

𝑛,𝑖(𝑑)] = 𝑜(1), then 𝜎r,2𝑛 achieves the minimum variance, i.e.,

lim
𝑛→∞

𝜎r,2𝑛 = 𝜎22 (𝑄) + 𝜎
2
3 (𝑄).

Remark 5.4. We recommend employing an iterative estimation procedure outlined by Belloni et al. (2017) to estimate 𝛽r𝑑,𝑛, in
which the 𝑚th step’s penalty loadings are estimated based on the (𝑚−1)th step’s LASSO estimates. Formally, this iterative procedure
is described by the following algorithm:

Algorithm 5.1.

Step 0: Set 𝜖r,(0)𝑛,𝑖 (𝑑) = 𝑌𝑖 if 𝐷𝑖 = 𝑑.
11

⋮
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Step 𝑚: Compute �̂�(𝑚)
𝑛,𝑙 (𝑑) =

√

1
𝑛
∑

1≤𝑖≤2𝑛 𝐼{𝐷𝑖 = 𝑑}𝜓2
𝑛,𝑖,𝑙(𝜖

r,(𝑚−1)
𝑛,𝑖 (𝑑))2 and compute (�̂�r,(𝑚)𝑑,𝑛 , 𝛽r,(𝑚)𝑑,𝑛 ) following (17) with �̂�(𝑚)

𝑛,𝑙 as the
penalty loadings, and 𝜖r,(𝑚)𝑛,𝑖 (𝑑) = 𝑌𝑖 − �̂�

r,(𝑚)
𝑑,𝑛 − 𝜓 ′

𝑖 𝛽
r,(𝑚)
𝑑,𝑛 if 𝐷𝑖 = 𝑑.

⋮
Step 𝑀 : …
Step 𝑀 + 1: Set 𝛽r𝑑,𝑛 = 𝛽r,(𝑀)

𝑑,𝑛 .

As suggested by Belloni et al. (2017), we set 𝑀 to be 15. We note that R package hdm has a built-in option for this iterative
procedure. For this choice of penalty loadings, arguments similar to those in Belloni et al. (2017) can be used to verify (19) under
‘‘matched pairs’’ designs. ■

Remark 5.5. When the 𝓁1-regularized adjustment is approximately correctly specified, Theorem 5.1 shows 𝛥r𝑛 achieves the
minimum variance derived in Remark 3.2, and thus, is guaranteed to be weakly more efficient than the difference-in-means
estimator (𝛥unadj𝑛 ). When 𝑊𝑛,𝑖 is fixed dimensional and 𝜓𝑛,𝑖 consists of sieve basis functions of (𝑋𝑖,𝑊𝑛,𝑖), the approximately correct
specification usually holds. Specifically, under regularity conditions such as the smoothness of 𝐸(𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑛,𝑖), we can approximate
(𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑛,𝑖) by 𝛼r𝑑,𝑛+𝜓

′
𝑛,𝑖𝛽

r
𝑑,𝑛 and 𝛽r𝑑,𝑛 is automatically sparse in the sense that ‖𝛽r𝑑,𝑛‖0 ≪ 𝑛. This means our regularized regression

djustment can select relevant sieve bases in nonparametric regression adjustments in a data-driven manner and automatically
inimize the limiting variance of the corresponding ATE estimator. ■

emark 5.6. When the dimension of 𝜓𝑛,𝑖 is ultra-high (i.e., 𝑝𝑛 ≫ 𝑛) and the regularized adjustment is not approximately correctly
pecified, 𝛥r𝑛 suffers from Freedman (2008)’s critique that, theoretically, it is possible to be less efficient than 𝛥unadj𝑛 . To overcome
his problem, we consider an additional step in which we treat the regularized adjustments (𝜓 ′

𝑛,𝑖𝛽
r
1,𝑛, 𝜓

′
𝑛,𝑖𝛽

r
0,𝑛) as a two-dimensional

ovariate and refit a linear regression with pair fixed effects. Such a procedure has also been studied by Cohen and Fogarty (2024)
n the setting with low-dimensional covariates and complete randomization. In fact, this strategy can improve upon general initial
egression adjustments as long as (9), (12), and Assumption 3.1 are satisfied. ■

Theorem 5.2 below shows the ‘‘refit’’ estimator for the ATE is weakly more efficient than both 𝛥unadj𝑛 and 𝛥r𝑛. To state the results,
efine 𝛤𝑛,𝑖 = (𝜓 ′

𝑛,𝑖𝛽
r
1,𝑛, 𝜓

′
𝑛,𝑖𝛽

r
0,𝑛)

′, 𝛤𝑛,𝑖 = (𝜓 ′
𝑛,𝑖𝛽

r
1,𝑛, 𝜓

′
𝑛,𝑖𝛽

r
0,𝑛), and 𝛥ref it𝑛 as the estimator in (15) with 𝜓𝑖 replaced by 𝛤𝑛,𝑖. Note that 𝛥ref it𝑛

emains numerically the same if we include the intercept �̂�r𝑑,𝑛 in the definition of 𝛤𝑛,𝑖. Following Remark 4.3, 𝛥ref it𝑛 is the intercept
n the linear regression of (𝐷𝜋(2𝑗−1) −𝐷𝜋(2𝑗−1))(𝑌𝜋(2𝑗−1) −𝑌𝜋(2𝑗)) on constant and (𝐷𝜋(2𝑗−1) −𝐷𝜋(2𝑗−1))(𝛤𝑛,𝜋(2𝑗−1) −𝛤𝑛,𝜋(2𝑗)). Replacing 𝛤𝑛,𝑖
y 𝛤𝑛,𝑖 + (�̂�r1,𝑛, �̂�

r
0,𝑛)

′ will not change the regression estimators.
The following assumption will be employed to control 𝛤𝑛,𝑖 in our subsequent analysis:

ssumption 5.5. For some 𝜅1 > 0 and 𝜅2,

inf
𝑛≥1

inf
𝑣∈𝐑2

‖𝑣‖−22 𝑣′𝐸[Var[𝛤𝑛,𝑖|𝑋𝑖]]𝑣 ≥ 𝜅1

sup
𝑛≥1

sup
𝑣∈𝐑2

‖𝑣‖−22 𝑣′𝐸[Var[𝛤𝑛,𝑖|𝑋𝑖]]𝑣 ≤ 𝜅2.

The following theorem characterizes the behavior of 𝛥ref it𝑛 :

heorem 5.2. Suppose 𝑄 satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumptions 2.2–2.3. Further suppose
ssumptions 5.1–5.5 hold. Then, (9), (12), and Assumption 3.1 are satisfied with �̂�𝑑,𝑛(𝑋𝑖,𝑊𝑛,𝑖) = 𝛤 ′

𝑛,𝑖𝛽
ref it
𝑛 and

𝑚𝑑,𝑛(𝑋𝑖,𝑊𝑛,𝑖) = 𝛤 ′
𝑛,𝑖𝛽

ref it
𝑛

or 𝑑 ∈ {0, 1} and 𝑛 ≥ 1, where 𝛽ref it𝑛 = (2𝐸[Var[𝛤𝑛,𝑖|𝑋𝑖]])−1𝐸[Cov[𝛤𝑛,𝑖, 𝑌𝑖(1) + 𝑌𝑖(0)|𝑋𝑖]]. In addition, denote the asymptotic variance of
̂ref it
𝑛 as 𝜎ref it,2𝑛 . Then, 𝜎unadj,2𝑛 ≥ 𝜎ref it,2𝑛 and 𝜎r,2𝑛 ≥ 𝜎ref it,2𝑛 .

emark 5.7. It is possible to further relax the full rank condition in Assumption 5.5 by running a ridge regression or truncating
he minimum eigenvalue of the gram matrix in the refitting step. ■

. Simulations

In this section, we conduct Monte Carlo experiments to assess the finite-sample performance of the inference methods proposed
n the paper. In all cases, we follow Bai et al. (2022) to consider tests of the hypothesis that

𝐻0 ∶ 𝛥(𝑄) = 𝛥0 versus 𝐻1 ∶ 𝛥(𝑄) ≠ 𝛥0.
12

ith 𝛥0 = 0 at nominal level 𝛼 = 0.05.
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6.1. Data generating processes

We generate potential outcomes for 𝑑 ∈ {0, 1} and 1 ≤ 𝑖 ≤ 2𝑛 by the equation

𝑌𝑖(𝑑) = 𝜇𝑑 + 𝑚𝑑 (𝑋𝑖,𝑊𝑖) + 𝜎𝑑 (𝑋𝑖,𝑊𝑖)𝜖𝑑,𝑖, 𝑑 = 0, 1, (21)

where 𝜇𝑑 , 𝑚𝑑
(

𝑋𝑖,𝑊𝑖
)

, 𝜎𝑑
(

𝑋𝑖,𝑊𝑖
)

, and 𝜖𝑑,𝑖 are specified in each model as follows. In each of the specifications, (𝑋𝑖,𝑊𝑖, 𝜖0,𝑖, 𝜖1,𝑖) are
.i.d. across 𝑖. The number of pairs 𝑛 is equal to 100 and 200. The number of replications is 10,000.

odel 1
(

𝑋𝑖,𝑊𝑖
)⊤ =

(

𝛷
(

𝑉𝑖1
)

, 𝛷
(

𝑉𝑖2
))⊤, where 𝛷(⋅) is the standard normal cumulative distribution function and

𝑉𝑖 ∼ 𝑁
((

0
0

)

,
(

1 𝜌
𝜌 1

))

,

𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝛾
(

𝑊𝑖 −
1
2

)

; 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

; 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1. We set 𝛾 = 4 and
𝜌 = 0.2.

Model 2
(

𝑋𝑖,𝑊𝑖
)⊤ =

(

𝛷
(

𝑉𝑖1
)

, 𝑉1𝑖𝑉𝑖2
)⊤, where 𝑉𝑖 is the same as in Model 1. 𝑚0

(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾1
(

𝑊𝑖 − 𝜌
)

+
𝛾2

(

𝛷−1 (𝑋𝑖
)2 − 1

)

. 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1.
(

𝛾1, 𝛾2
)⊤ = (1, 2)⊤ and 𝜌 = 0.2.

Model 3 The same as in Model 2, except that 𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾1
(

𝑊𝑖 − 𝜌
)

+ 𝛾2
(

𝛷
(

𝑊𝑖
)

− 1
2

)

+ 𝛾3
(

𝛷−1 (𝑋𝑖
)2 − 1

)

with
(

𝛾1, 𝛾2, 𝛾3
)⊤ =

(

1
4 , 1, 2

)⊤
.

odel 4
(

𝑋𝑖,𝑊𝑖
)⊤ =

(

𝑉𝑖1, 𝑉1𝑖𝑉𝑖2
)⊤, where 𝑉𝑖 is the same as in Model 1. 𝑚0

(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾1
(

𝑊𝑖 − 𝜌
)

+ 𝛾2
(

𝛷
(

𝑊𝑖
)

− 1
2

)

+

𝛾3
(

𝑋2
𝑖 − 1

)

. 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1.
(

𝛾1, 𝛾2, 𝛾3
)⊤ = (2, 1, 2)⊤ and 𝜌 = 0.2.

odel 5 The same as in Model 4, except that 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

+
(

𝛷
(

𝑋𝑖
)

− 1
2

)

.

Model 6 The same as in Model 5, except that 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

=
(

𝛷
(

𝑋𝑖
)

+ 0.5
)

.

Model 7 𝑋𝑖 =
(

𝑉𝑖1, 𝑉𝑖2
)⊤ and 𝑊𝑖 =

(

𝑉𝑖1𝑉𝑖3, 𝑉𝑖2𝑉𝑖4
)⊤, where 𝑉𝑖 ∼ 𝑁(0, 𝛴) with dim(𝑉𝑖) = 4 and 𝛴 consisting of 1 on the diagonal

and 𝜌 on all other elements. 𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾 ′1
(

𝑊𝑖 − 𝜌
)

+ 𝛾 ′2
(

𝛷
(

𝑊𝑖
)

− 1
2

)

+ 𝛾3
(

𝑋2
𝑖1 − 1

)

with 𝛾1 = (2, 2)⊤ , 𝛾2 =
(1, 1)⊤ , 𝛾3 = 1. 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0

(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1. 𝜌 = 0.2.

odel 8 The same as in Model 7, except that 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

+
(

𝛷
(

𝑋𝑖1
)

− 1
2

)

.

Model 9 The same as in Model 8, except that 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

=
(

𝛷
(

𝑋𝑖1
)

+ 0.5
)

Model 10 𝑋𝑖 =
(

𝛷
(

𝑉𝑖1
)

,… , 𝛷
(

𝑉𝑖4
))⊤ and 𝑊𝑖 =

(

𝑉𝑖1𝑉𝑖5, 𝑉𝑖2𝑉𝑖6
)⊤, where 𝑉𝑖 ∼ 𝑁(0, 𝛴) with dim(𝑉𝑖) = 6 and 𝛴 consist-

ing of 1 on the diagonal and 𝜌 on all other elements. 𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾 ′1
(

𝑊𝑖 − 𝜌
)

+ 𝛾 ′2
(

𝛷
(

𝑊𝑖
)

− 1
2

)

+

𝛾 ′3

(

(

𝛷−1 (𝑋𝑖1
)2 , 𝛷−1 (𝑋𝑖2

)2
)⊤

− 1
)

with 𝛾1 = (1, 1)⊤ , 𝛾2 =
(

1
2 ,

1
2

)⊤
, 𝛾3 =

(

1
2 ,

1
2

)⊤
. 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0

(

𝑋𝑖,𝑊𝑖
)

=

𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1. 𝜌 = 0.2

odel 11 The same as in Model 10, except that 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

+ 1
4
∑4
𝑗=1

(

𝑋𝑖𝑗 −
1
2

)

.

Model 12 𝑋𝑖 =
(

𝛷
(

𝑉𝑖1
)

,… , 𝛷
(

𝑉𝑖4
))⊤ and 𝑊𝑖 =

(

𝑉𝑖1𝑉𝑖41,… , 𝑉𝑖40𝑉𝑖80
)⊤, where 𝑉𝑖 ∼ 𝑁(0, 𝛴) with dim(𝑉𝑖) = 80. 𝛴 is the Toeplitz

matrix

𝛴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0.5 0.52 ⋯ 0.579

0.5 1 0.5 ⋯ 0.578

0.52 0.5 1 ⋯ 0.577

⋮ ⋮ ⋮ ⋱ ⋮
0.579 0.578 0.577 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾 ′1𝑊𝑖 + 𝛾 ′2
(

𝛷−1 (𝑋𝑖
)2 − 1

)

, 𝛾1 =
(

1
12 ,

1
22 ,… , 1

402

)⊤
with dim(𝛾1) = 40, and 𝛾2 = 1

2

(

1
8 ,

1
8 ,

1
8 ,

1
8

)⊤

with dim(𝛾2) = 4. 𝜖𝑑,𝑖 ∼ 𝑁(0, 1) for 𝑑 = 0, 1; 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

= 1.

odel 13 The same as in Model 12, except that 𝑚0
(

𝑋𝑖,𝑊𝑖
)

= 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝛾 ′1𝑊𝑖 + 𝛾 ′2
(

𝛷
(

𝑊𝑖
)

− 1
2

)

+ 𝛾 ′3
(

𝛷−1 (𝑋𝑖
)2 − 1

)

,

𝛾 =
(

1 ,… , 1
)⊤

, 𝛾 = 1
(

1 ,… , 1
)⊤

, and 𝛾 = 1
(

1 , 1 , 1 , 1
)⊤

with dim(𝛾 ) = dim(𝛾 ) = 40 and dim(𝛾 ) = 4.
13
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Table 1
Rejection probabilities for Models 1–11 when 𝑛 = 100.

Model 𝐻0: 𝛥 = 0 𝐻1: 𝛥 = 1∕4

unadj naïve naïve2 pfe refit unadj naïve naïve2 pfe refit

1 5.47 5.57 5.63 5.76 5.84 22.48 43.89 43.95 43.91 43.92
2 4.96 5.26 5.30 5.47 5.32 23.32 28.02 27.96 37.21 33.12
3 4.99 5.28 5.24 5.48 5.27 32.19 27.88 27.96 37.34 36.29
4 5.31 5.28 5.28 5.48 5.79 11.78 27.88 28.03 37.34 43.28
5 5.43 5.09 5.08 5.49 5.78 11.87 27.72 27.88 36.69 43.08
6 5.28 5.43 5.41 5.58 5.79 11.78 26.67 26.72 34.71 40.29
7 5.64 5.63 5.62 5.98 6.04 9.24 34.55 34.65 37.96 42.08
8 5.63 5.54 5.51 6.03 6.17 9.28 34.11 34.42 37.22 41.29
9 5.74 5.69 5.76 6.19 5.89 8.99 32.39 32.30 35.42 38.75
10 5.24 5.78 5.73 6.05 6.04 14.27 30.80 30.75 32.02 32.51
11 5.19 5.78 5.72 6.07 5.95 14.36 30.60 30.49 32.21 32.81

Table 2
Rejection probabilities for Models 12–15 when 𝑛 = 100.

𝐻0: 𝛥 = 0 𝐻1: 𝛥 = 1∕4

unadj refit unadj refit

12 5.39 6.14 22.32 43.90
13 5.36 6.22 21.82 43.98
14 5.43 6.31 21.58 42.63
15 5.73 6.56 20.90 39.71

Model 14 The same as in Model 13, except that 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

+
∑4
𝑗=1

1
𝑗2

(

𝑋𝑖𝑗 −
1
2

)

.

Model 15 The same as in Model 14, except that 𝜎0
(

𝑋𝑖,𝑊𝑖
)

= 𝜎1
(

𝑋𝑖,𝑊𝑖
)

=
(

𝑋𝑖1 + 0.5
)

.

It is worth noting that Models 1, 2, 3, 4, 7, 10, 12, and 13 imply homogeneous treatment effects because 𝑚1
(

𝑋𝑖,𝑊𝑖
)

= 𝑚0
(

𝑋𝑖,𝑊𝑖
)

.
Among them, 𝐸[𝑌𝑖(𝑑)|𝑋𝑖,𝑊𝑖] − 𝐸[𝑌𝑖(𝑑)|𝑋𝑖] is linear in 𝑊𝑖 in Models 1, 2, and 12. Models 5, 8, 11, and 14 have heterogeneous
but homoscedastic treatment effects. In Models 6, 9, and 15, however, the implied treatment effects are both heterogeneous and
heteroscedastic. Models 12–15 contain high-dimensional covariates.

We follow Bai et al. (2022) to match pairs. Specifically, if dim
(

𝑋𝑖
)

= 1, we match pairs by sorting 𝑋𝑖, 𝑖 = 1,… , 2𝑛. If dim
(

𝑋𝑖
)

> 1,
we match pairs by the permutation 𝜋 calculated using the R package nbpMatching. For more details, see Bai et al. (2022, Section
4). After matching the pairs, we flip coins to randomly select one unit within each pair for treatment and another for control.

6.2. Estimation and inference

We set 𝜇0 = 0 and 𝜇1 = 𝛥, where 𝛥 = 0 and 1∕4 are used to illustrate the size and power, respectively. Rejection probabilities
in percentage points are presented. To further illustrate the efficiency gains obtained by regression adjustments, in Fig. 1, we plot
the average standard error reduction in percentage relative to the standard error of the estimator without adjustments for various
estimation methods.

Specifically, we consider the following adjusted estimators.

(i) unadj: the estimator with no adjustments. In this case, our standard error is identical to the adjusted standard error proposed
by Bai et al. (2022).

(ii) naïve: the linear adjustments with regressors 𝑊𝑖 but without pair dummies.
(iii) naïve2: the linear adjustments with 𝑋𝑖 and 𝑊𝑖 regressors but without pair dummies.
(iv) pfe: the linear adjustments with regressors 𝑊𝑖 and pair dummies.
(v) refit: refit the 𝓁1-regularized adjustments by linear regression with pair dummies.

See Section C in the Online Supplement for the regressors used in the regularized adjustments.
For Models 1–11, we examine the performance of estimators (i)–(v). For Models 12–15, we assess the performance among

estimators (i) and (v) in high-dimensional settings. Note that the adjustments are misspecified for almost all the models. The only
exception is Model 1, for which the linear adjustment in 𝑊𝑖 is correctly specified because 𝑚𝑑 (𝑋𝑖,𝑊𝑖) is just a linear function of 𝑊𝑖.

6.3. Simulation results

Tables 1 and 3 report rejection probabilities at the 0.05 level and power of the different methods for Models 1–11 when 𝑛 is 100
and 200, respectively. Several patterns emerge. First, for all the estimators, the rejection rates under 𝐻 are close to the nominal
14
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Table 3
Rejection probabilities for Models 1–11 when 𝑛 = 200.

Model 𝐻0: 𝛥 = 0 𝐻1: 𝛥 = 1∕4

unadj naïve naïve2 pfe refit unadj naïve naïve2 pfe refit

1 5.08 5.04 5.10 5.21 5.31 38.94 70.35 70.36 70.32 70.30
2 5.69 5.28 5.28 5.24 5.40 40.31 49.25 49.32 65.36 57.87
3 5.44 5.29 5.30 5.35 5.41 56.89 49.43 49.51 64.96 62.42
4 5.45 5.29 5.29 5.35 5.20 18.55 49.43 49.67 64.96 69.96
5 5.45 5.24 5.18 5.19 5.29 18.41 48.65 48.80 64.11 69.09
6 5.62 5.32 5.31 5.35 5.43 18.19 46.71 46.67 61.09 65.98
7 5.24 5.51 5.46 5.34 5.49 11.86 60.73 60.63 65.14 69.24
8 5.23 5.49 5.47 5.35 5.65 11.84 60.00 60.10 64.93 68.02
9 5.30 5.58 5.57 5.66 5.81 11.90 57.25 57.28 61.61 64.88
10 5.34 5.19 5.15 5.25 5.31 23.95 55.49 55.44 56.64 56.43
11 5.41 5.36 5.32 5.34 5.41 23.88 55.01 55.05 56.31 56.18

Table 4
Rejection probabilities for Models 12–15 when 𝑛 = 200.

𝐻0: 𝛥 = 0 𝐻1: 𝛥 = 1∕4

unadj refit unadj refit

12 4.99 5.84 39.56 69.66
13 5.01 5.80 38.58 69.54
14 5.05 5.72 37.94 68.08
15 5.03 5.64 37.20 65.04

level even when 𝑛 = 100 and with misspecified adjustments. This result is expected because all the estimators take into account the
dependence structure arising in the ‘‘matched pairs’’ design, consistent with the findings in Bai et al. (2022).

Second, in terms of power, ‘‘pfe’’ is higher than ‘‘unadj’’, ‘‘naïve’’, and ‘‘naïve2’’ for all eleven models, as predicted by our
theory. This finding confirms that ‘‘pfe’’ is the optimal linear adjustment and will not degrade the precision of the ATE estimator.
In contrast, we observe that ‘‘naïve’’ and ‘‘naïve2’’ in Model 3 are even less powerful than the unadjusted estimator ‘‘unadj’’. Fig. 1
further confirms that these two methods inflate the estimation standard error. This result echoes Freedman’s critique (Freedman,
2008) that careless regression adjustments may degrade the estimation precision. Our ‘‘pfe’’ addresses this issue because it has been
proven to be weakly more efficient than the unadjusted estimator.

Third, the improvement of power for ‘‘pfe’’ is mainly due to the reduction of estimation standard errors, which can be more
than 50% as shown in Fig. 1 for Models 4–9. This means that the length of the confidence interval of the ‘‘pfe’’ estimator is just
half of that for the ‘‘unadj’’ estimator. Note the standard error of the ‘‘unadj’’ estimator is the one proposed by Bai et al. (2022),
which has already been adjusted to account for the cross-sectional dependence created in pair matching. The extra 50% reduction
is therefore produced purely by the regression adjustment. For Models 10–11, the reduction of standard errors achieved by ‘‘pfe’’
is more than 40% as well. For Model 1, the linear regression is correctly specified so that all three methods achieve the global
minimum asymptotic variance and maximum power. For Model 2, 𝑚𝑑 (𝑋𝑖,𝑊𝑖) − 𝐸[𝑚𝑑 (𝑋𝑖,𝑊𝑖)|𝑋𝑖] = 𝛾(𝑊𝑖 − 𝐸[𝑊𝑖|𝑋𝑖]) so that the
inear adjustment 𝛾𝑊𝑖 satisfies the conditions in Theorem 3.1. Therefore, ‘‘pfe’’, as the best linear adjustment, is also the best
djustment globally, achieving the global minimum asymptotic variance and maximum power. In contrast, ‘‘naïve’’ and ‘‘naïve2’’
re not the best linear adjustment and therefore less powerful than ‘‘pfe’’ because of the omitted pair dummies.

Finally, the ‘‘refit’’ method has the best power for most models as they automatically achieve the global minimum asymptotic
ariance when the dimension of 𝑊𝑖 is fixed.

Tables 2 and 4 report the size and power for the ‘‘refit’’ adjustments when both 𝑊𝑖 and 𝑋𝑖 are high-dimensional. We see that
he size under the null is close to the nominal 5% while the power for the adjusted estimator is higher than the unadjusted one.
ig. 1 further illustrates the reduction of the standard error is more than 30% for all high-dimensional models.

. Empirical illustration

In this section, we revisit the randomized experiment with a matched pairs design conducted in Groh and McKenzie (2016). In
he paper, they examined the impact of macroinsurance on microenterprises. Here, we apply the covariate adjustment methods
eveloped in this paper to their data and reinvestigate the average effect of macroinsurance on three outcome variables: the
icroenterprises’ monthly profits, revenues, and investment.

The subjects in the experiment are microenterprise owners, who were the clients of the largest microfinance institution in Egypt.
n the randomization, after an exact match of gender and the institution’s branch code, those clients were grouped into pairs by
pplying an optimal greedy algorithm to additional 13 matching variables. Within each pair, a macroinsurance product was then
15
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Fig. 1. Average Standard Error Reduction in Percentage under 𝐻1 when 𝑛 = 200.
Notes: The figure plots average standard error reduction in percentage achieved by regression adjustments relative to ‘‘unadj’’ under 𝐻1 for Models 1–15 when
𝑛 = 200.

we re-order the pairs in our sample according to the procedure described in Section 5.1 of Jiang et al. (2022). The resulting sample
contains 2824 microenterprise owners, that is, 1412 pairs of them.2

Table 5 reports the ATEs with the standard errors (in parentheses) estimated by different methods. Among them, ‘‘GM’’
corresponds to the method used in Groh and McKenzie (2016). The description of other methods is similar to that in Section 6.2.3
The results in this table prompt the following observations.

First, aligning with our theoretical and simulation findings, we observe that the standard errors associated with the covariate-
adjusted ATEs, particularly those for the ‘‘naïve2’’ and ‘‘pfe’’ estimates, are generally lower compared to the ATE estimate without
any adjustment. This pattern is consistent across nearly all the outcome variables. To illustrate, when examining the revenue
outcome, the standard errors for the ‘‘pfe’’ estimates are 10.2% smaller than those for the unadjusted ATE estimate.

Second, the standard errors of the ‘‘refit’’ estimates are consistently smaller than those of the unadjusted ATE estimate across
all the outcome variables. For example, when profits are the outcome variable, the ‘‘refit’’ estimates exhibit standard errors 7.5%
smaller than those of the unadjusted ATE estimate. Moreover, compared with those of the ‘‘pfe’’ estimates, the standard errors of
‘‘refit’’ are slightly smaller.

8. Conclusion

This paper considers covariate adjustment for the estimation of average treatment effect in ‘‘matched pairs’’ designs when
covariates other than the matching variables are available. When the dimension of these covariates is low, we suggest estimating the

2 See Groh and McKenzie (2016) and Jiang et al. (2022) for more details.
3 See Section D in the Online Supplement for the details of the regressors used in all these methods.
16
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Table 5
Impacts of macronsurance for microenterprises.

Y n unadj GM naïve naïve2 pfe refit

Profits 1322 −85.65 −50.88 −41.69 −50.97 −51.60 −55.13
(49.43) (46.46) (47.22) (45.49) (46.94) (45.71)

Revenue 1318 −838.60 −660.16 −611.75 −610.80 −635.80 −600.97
(319.02) (284.02) (286.93) (282.93) (286.50) (284.60)

Investment 1410 −66.60 −66.60 −49.37 −50.72 −67.31 −58.77
(118.93) (118.66) (119.23) (118.97) (118.88) (118.84)

Notes: The table reports the ATE estimates of the effect of macroinsurance for microenterprises. Standard errors are in parentheses.

average treatment effect by linear regression of the outcome on treatment status and covariates, controlling for pair fixed effects.
We show that this estimator is no worse than the simple difference-in-means estimator in terms of efficiency. When the dimension of
these covariates is high, we suggest a two-step estimation procedure: in the first step, we run 𝓁1-regularized regressions of outcome
on covariates for the treated and control groups separately and obtain the fitted values for both potential outcomes, and in the
second step, we estimate the average treatment effect by refitting a linear regression of outcome on treatment status and regularized
adjustments from the first step, controlling for the pair fixed effects. We show that the final estimator is no worse than the simple
difference-in-means estimator in terms of efficiency. When the conditional mean models are approximately correctly specified, this
estimator further achieves the minimum variance as if all relevant covariates are used to form pairs in the experiment design stage.
We take the choice of variables to use in forming pairs as given and focus on how to obtain more efficient estimators of the average
treatment effect in the analysis stage. Our paper is therefore silent on the important question of how to choose the relevant matching
variables in the design stage. This topic is left for future research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105740.
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