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ABSTRACT
This article considers the problem of testing a finite number of moment inequalities. For this problem,
Romano, Shaikh, and Wolf proposed a two-step testing procedure. In the first step, the procedure incor-
porates information about the location of moments using a confidence region. In the second step, the
procedure accounts for the use of the confidence region in the first step by adjusting the significance level
of the test appropriately. Its justification, however, has so far been limited to settings in which the number of
moments is fixed with the sample size. In this article, we provide weak assumptions under which the same
procedure remains valid even in settings in which there are “many” moments in the sense that the number
of moments grows rapidly with the sample size. We confirm the practical relevance of our theoretical
guarantees in a simulation study. We additionally provide both numerical and theoretical evidence that the
procedure compares favorably with the method proposed by Chernozhukov, Chetverikov, and Kato, which
has also been shown to be valid in such settings.
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1. Introduction

Let Xi, i = 1, . . . , n be an independent and identically dis-
tributed (iid) sequence of random variables with distribution
P ∈ Pn on Rpn and consider the problem of testing

H0 : P ∈ P0,n versus H1 : P ∈ P1,n , (1)
where

P0,n ≡ {P ∈ Pn : EP[Xi] ≤ 0} (2)

and P1,n = Pn \ P0,n. Here, the inequality in Equation (2) is
intended to be interpreted component-wise and Pn is a “large”
class of possible distributions for the observed data. By indexing
both the number of moments, pn, and the class of possible
distributions, Pn, by the sample size n, we anticipate asymptotic
results that allow the number of moments pn to grow rapidly
with the sample size n. In this way, our asymptotic framework
can accommodate settings in which it is desired to test possibly
“many” moment inequalities. Our goal is to construct tests φn =
φn(X1, . . . , Xn) of Equation (1) that are uniformly consistent in
level, that is,

lim sup
n→∞

sup
P∈P0,n

EP[φn] ≤ α (3)

for some prespecified value of α ∈ (0, 1
2 ).

In many instances where the testing problem described above
arises in economics, the number of moments is large. Examples
include entry models, as in Ciliberto and Tamer (2009), in which
pn is on the order of 2m+1, where m is the number of firms,
and dynamic models of imperfect competition, as in Bajari,
Benkard, and Levin (2007), where pn may even be as large as 500.
Yet, with the notable exception of Chernozhukov, Chetverikov,
and Kato (2019), tests of the null hypothesis in Equation (1) that

CONTACT Azeem M. Shaikh amshaikh@uchicago.edu Kenneth C. Griffin, Department of Economics, University of Chicago, 1126 East 59th Street, Chicago, Illinois
60637.

have been proposed have only been shown to satisfy Equation
(3) under restrictions on Pn that require number of moments
pn to be small in the sense that it is independent of the sample
size n. Canay and Shaikh (2017) provided a detailed review
of these tests. In this article, we focus on one particular such
test of the null hypothesis in Equation (1): the two-step testing
procedure proposed by Romano, Shaikh, and Wolf (2014). This
test was shown to satisfy Equation (3) under assumptions on
Pn that restrict pn to not depend on n. Romano, Shaikh, and
Wolf (2014) emphasized, however, that the test remains com-
putationally feasible even if the number of moments is large,
thereby permitting its implementation in examples such as those
described above. In this article, we show that the test of Romano,
Shaikh, and Wolf (2014) in fact continues to satisfy Equation
(3) for a large class of distributions that permits the number of
moments pn to grow exponentially with the sample size n. In
this way, our results establish the validity of the methodology
for testing “many” moment inequalities, thereby supporting its
application in examples such as those described above.

Our theoretical analysis relies crucially on the seminal work
of Chernozhukov, Chetverikov, and Kato (2013, 2017) on the
high-dimensional central limit theorem. The high-dimensional
central limit theorem had previously been applied to study
tests of the null hypothesis in Equation (1) by Chernozhukov,
Chetverikov, and Kato (2019), who, as mentioned previously,
develop tests that satisfy (3) for a large class of distributions Pn
that permits the number of moments pn to grow rapidly with
the sample size n. One motivation for establishing that the test
of Romano, Shaikh, and Wolf (2014) remains valid with “many”
moments is a result by Allen (2018) that provides conditions
under which the test of Romano, Shaikh, and Wolf (2014)
always rejects whenever the preferred test in Chernozhukov,
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Chetverikov, and Kato (2019) rejects. In Section 2.1, we revisit
the arguments in Allen (2018) and highlight that the power
advantages of Romano, Shaikh, and Wolf (2014) arise from its
use of a better bound for the nuisance parameter

√
nEP[Xi]

than that employed by Chernozhukov, Chetverikov, and Kato
(2019). Prior to the results in this article, however, it was unclear
whether it was sensible to compare the power of tests developed
by Chernozhukov, Chetverikov, and Kato (2019) with the one
proposed by Romano, Shaikh, and Wolf (2014) because it was
not known whether the latter test continued to satisfy Equa-
tion (3) when the number of moments pn was permitted to
grow rapidly with the sample size n. In light of the results in
this article, such a comparison is now theoretically justified. In
particular, we note that the power advantages established by
Allen (2018) and the minimax rate optimality of the tests in
Chernozhukov, Chetverikov, and Kato (2019) imply that, under
suitable conditions, the test in Romano, Shaikh, and Wolf (2014)
is also minimax rate optimal; see Remark 2.3 below. Since the
result by Allen (2018) pertains a particular implementation of
the test in Romano, Shaikh, and Wolf (2014), we supplement
our theoretical comparison with simulation evidence for other
implementations of the two tests. In our simulations, we find
that the test proposed by Romano, Shaikh, and Wolf (2014)
continues to compare favorably, both in terms of size and power,
with the test proposed by Chernozhukov, Chetverikov, and Kato
(2019).

The remainder of the article is organized as follows. In Sec-
tion 2, we provide a detailed description of the testing procedure
in Romano, Shaikh, and Wolf (2014) and the assumptions that
will underlie our analysis. In our discussion of the assumptions,
we emphasize that they permit the number of moments pn to
grow rapidly with the sample size n. We then establish that the
test satisfies Equation (3) under these assumptions. The proof
of this result is relegated to the appendix. In Section 2, we
also revisit the analysis in Allen (2018) to better understand
the power advantages of the test proposed by Romano, Shaikh,
and Wolf (2014). Finally, in Section 3 we examine the practical
relevance of our theoretical results via a simulation study, which
includes further comparisons with the test proposed by Cher-
nozhukov, Chetverikov, and Kato (2019).

2. Main Result

We begin this section by describing the testing procedure in
Romano, Shaikh, and Wolf (2014). In order to do so, it is useful
to introduce some further notation. For 1 ≤ j ≤ pn, let Xi,j
denote the jth component of Xi and set

X̄j,n ≡ 1
n

∑
1≤i≤n

Xi,j (4)

S2
j,n ≡ 1

n
∑

1≤i≤n
(Xi,j − X̄j,n)

2 . (5)

We will also make use of the notation μj(P) ≡ EP[Xi,j] and
σ 2

j (P) ≡ varP[Xi,j], so (4) may be equivalently expressed as
μj(P̂n) and (5) as σ 2

j (P̂n), where P̂n is the empirical distribution

of {Xi}n
i=1. While Romano, Shaikh, and Wolf (2014) considered

a variety of test statistics, we focus on the test that rejects for
large values of

Tn ≡ max

{
max

1≤j≤pn

√
nX̄j,n

Sj,n
, 0

}
.

In order to define the critical value with which we will compare
Tn, it will be useful to introduce an iid sequence of random
variables with distribution P̂n conditional on {Xi}n

i=1, which we
will denote by X∗

i , i = 1, . . . , n. We further define X̄∗
j,n and (S∗

j,n)
2

by analogy with X̄j,n in Equation (4) and S2
j,n in Equation (5) but

substituting X∗
i for Xi. Using this notation, the critical value with

which we will compare Tn is given by

ĉ(2)
n (1 − α + β) ≡

inf
{

c ∈ R : P
{

max

{
max

1≤j≤pn

√
n(X̄∗

j,n − X̄j,n + ûj,n)

S∗
j,n

, 0

}

≤ c
∣∣∣{Xi}n

i=1

}
≥ 1 − α + β

}
, (6)

where α ∈ (0, 1
2 ) is the nominal level of the test, 0 < β < α,

and

ûj,n ≡ min
{

X̄j,n + Sj,n√
n

ĉ(1)
n (1 − β), 0

}
(7)

with

ĉ(1)
n (1 − β) ≡ inf

{
c ∈ R : P

{
max

1≤j≤pn

√
n(X̄j,n − X̄∗

j,n)

S∗
j,n

≤ c
∣∣∣{Xi}n

i=1

}
≥ 1 − β

}
. (8)

The test φRSW
n of the null hypothesis in Equation (1) we consider

rejects whenever Tn exceeds ĉ(2)
n (1 − α + β), that is,

φRSW
n ≡ I

{
Tn > ĉ(2)

n (1 − α + β)
}

. (9)

In order to motivate this choice of critical value, it is useful
to note the test statistic Tn satisfies

Tn = max

{
max

1≤j≤pn

(√
n(X̄j,n − μj(P))

Sj,n
+

√
nμj(P)

Sj,n

)
, 0

}
.

(10)
The decomposition of Tn in Equation (10) highlights that the
main impediment to approximating the distribution of Tn is the
presence of the nuisance parameters

√
nμj(P) for 1 ≤ j ≤ pn.

Even though these nuisance parameters cannot be consistently
estimated, Romano, Shaikh, and Wolf (2014) observed that it
may still be possible to construct a suitably valid confidence
region for them. Lemma A.1 in the appendix employs their
insight and the high-dimensional central limit theorem of Cher-
nozhukov, Chetverikov, and Kato (2017) to show, under con-
ditions that permit pn to grow rapidly with the sample size n,
that

√
nμj(P) ≤ √

nûj,n for all 1 ≤ j ≤ pn with probability
approximately no less than 1−β whenever the null hypothesis in
(1) is true. Since Tn is monotonically increasing in the nuisance
parameters

√
nμj(P) for all 1 ≤ j ≤ pn it follows that, viewed

as a function of these nuisance parameters, any quantile of Tn is
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maximized over said confidence region by setting
√

nμj(P) =√
nûj,n for all 1 ≤ j ≤ pn. Thus, the critical value ĉ(2)

n (1−α+β)

is a bootstrap estimate of the 1 − α + β quantile of Tn under
the “least favorable” nuisance parameter value

√
nμj(P) =√

nûj,n for all 1 ≤ j ≤ pn. Here, the 1 − α + β quantile is
employed instead of 1 − α, to account for the possibility that,
with probability approximately no greater than β , we may find√

nμj(P) >
√

nûj,n for some 1 ≤ j ≤ pn.

Remark 2.1. Instead of testing (1), in certain applications it is of
interest to test whether P satisfies

μj(P) = 0 for all 1 ≤ j ≤ kn and
μj(P) ≤ 0 for all kn + 1 ≤ j ≤ pn.

While such a hypothesis can be mapped into our framework
simply by writing μj(P) = 0 as the inequalities μj(P) ≤ 0 and
−μj(P) ≤ 0, a direct application of the test φRSW

n is not advisable
because it does not take full advantage of the structure of the
null hypothesis. Formally, constructing a confidence region for√

nμj(P) for all 1 ≤ j ≤ pn is not needed as we now know
that, under the null hypothesis,

√
nμj(P) = 0 for all 1 ≤ j ≤ kn.

As a result, Romano, Shaikh, and Wolf (2014) instead advocated
employing the test statistic

max

{
max

1≤j≤kn

∣∣∣∣∣
√

nX̄j,n

Sj,n

∣∣∣∣∣ , max
kn+1≤j≤pn

√
nX̄j,n

Sj,n
, 0

}
,

substituting the maximum over 1 ≤ j ≤ pn with a maximum
over kn + 1 ≤ j ≤ pn when computing ĉ(1)

n (1 − β), and setting
the 1 −α +β (conditional on {Xi}n

i=1) bootstrap quantile of the
statistic

max

{
max

1≤j≤kn

∣∣∣∣∣
√

n(X̄∗
j,n−X̄j,n)

S∗
j,n

∣∣∣∣∣ , max
1≤j≤pn

√
n(X̄∗

j,n−X̄j,n + ûj,n)

S∗
j,n

, 0

}

as the critical value with which to compare Tn; see Remarks 2.3
and S.4 in Romano, Shaikh, and Wolf (2014).

Our analysis of the test defined in Equation (9) requires the
following assumption:

Assumption 2.1. (i) {Xi}n
i=1 is an iid sample with Xi ∈ Rpn

and Xi ∼ P ∈ Pn; (ii) σj(P) > 0 for all 1 ≤ j ≤ pn and
P ∈ Pn; (iii) For k = 1, 2, there is a Mk,n < ∞ such that
EP[|Xi,j − μj(P)|2+k] ≤ σ 2+k

j (P)Mk
k,n for all 1 ≤ j ≤ pn and

P ∈ Pn; (iv) There exists a Bn < ∞ such that EP[ max
1≤j≤pn

|Xi,j −
μj(P)|4/σ 4

j (P)] ≤ B4
n for all P ∈ Pn; (v) (M2

1,n ∨ M2
2,n ∨

B2
n) log3.5(pnn) = o(n(1−δ)/2) for some δ ∈ (0, 1).

Assumption 2.1(i) simply formalizes the requirement that
{Xi}n

i=1 be an i.i.d. sample, while Assumption 2.1(ii) requires the
variance of Xi,j to be positive for all P ∈ Pn and 1 ≤ j ≤ pn.
In Assumption 2.1(iii), we impose a uniform in P ∈ Pn and
1 ≤ j ≤ pn bound on the (standardized) moments of Xi,j.
This condition is a strengthening of the (standardized) uniform
integrability condition imposed by Romano, Shaikh, and Wolf
(2014), which we require in order to study a setting in which
pn diverges to infinity. Assumption 2.1(iv) bounds the fourth

moments of the maximum of the (standardized) Xi,j. If, for
example, the support of the standardized Xi,j under P is bounded
uniformly in P ∈ Pn, 1 ≤ j ≤ pn, and n, then Bn can be taken to
be a constant independent of n. In contrast, if the standardized
Xi,j have exponential tails uniformly in P ∈ Pn, 1 ≤ j ≤ pn,
and n, then Bn can be set proportional to a power of log(pn).
Finally, Assumption 2.1(v) states the main condition governing
the relationship between the dimension pn and the sample size
n. Importantly, we note that under suitable moment restrictions
on Xi,j, pn may grow exponentially with n.

Under Assumption 2.1, we are able to establish the main
result of this article.

Theorem 2.1. If Assumption 2.1 holds, α ∈ (0, 1
2 ), and 0 < β <

α, then φRSW
n defined in (9) satisfies (3).

Theorem 2.1 verifies that the test proposed in Romano,
Shaikh, and Wolf (2014) is indeed able to satisfy (3) even in
settings in which pn grows rapidly with the sample size. In this
manner, Theorem 2.1 provides theoretical support for applying
the test φRSW

n in empirical applications with “many” moment
inequalities. The ability of the test in Romano, Shaikh, and Wolf
(2014) to control size in such high-dimensional settings had pre-
viously been conjectured, but not established, by Chernozhukov,
Chetverikov, and Kato (2019).

While Theorem 2.1 applies for any fixed value of β ∈ (0, α),
we note that the theorem remains true if β is instead allowed to
depend on n provided βn ∈ (0, α) for all n (but with βn possibly
converging to {0, α}). Such an extension can be helpful, for
example, when a researcher has a set of local alternatives against
which she aims to maximize (over β) weighted average power;
see Remark S.6 in Romano, Shaikh, and Wolf (2014). In such a
setting, the optimal β can depend on n through the dependence
of pn on n. We emphasize, however, that the “optimal” β depends
on the set of local alternatives under consideration. As a simple
rule of thumb, we find that setting β = α/10, as recommended
by Romano, Shaikh, and Wolf (2014), performs well in our
simulations.

Remark 2.2. In some cases, it may be of interest to determine
not just whether μj(P) ≤ 0 for all 1 ≤ j ≤ pn or not, but the
specific values of 1 ≤ j ≤ pn for which μj(P) > 0. For this
purpose, it is natural to consider the problem of simultaneously
testing Hj : P ∈ Pj,n versus H′

j : P ∈ P′
j,n for j = 1, . . . , pn,

where Pj,n ≡ {P ∈ Pn : μj(P) ≤ 0} and P′
j,n ≡ Pn \ Pj. In

order to account for the multiplicity of decisions being made, it
is common to require control of the familywise error rate in the
sense that

lim sup
n→∞

sup
P∈Pn

FWERP ≤ α , (11)

where

FWERP = P{reject any Hj with P ∈ Pj,n} .

Using Theorem 2.1, it is possible to develop procedures that
satisfy Equation (11) under Assumption 2.1. For instance, it is
straightforward to show that the procedure that rejects any Hj

with
√

nX̄j,n/Sj,n > ĉ(2)
n (1 − α + β) satisfies Equation (11)

under Assumption 2.1. By combining Theorem 2.1 with results
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in Romano and Wolf (2005), iterative improvements upon such
a procedure are also possible. Indeed, one may simply apply this
procedure and then repeat it with the set of null hypotheses
that are not rejected after the first application, continuing in this
fashion until no further null hypotheses are rejected. For some
results in settings in which pn remains fixed with the sample size
n, see Romano and Wolf (2018).

2.1. Alternative Procedures

Chernozhukov, Chetverikov, and Kato (2019) proposed several
different tests of the null hypothesis in Equation (1). In our
comparisons, we restrict attention to their most preferred test,
which is similar in spirit to the “generalized moment selection”
tests developed in Andrews and Soares (2010). The proposed
test rejects for large values of

T̃n ≡ max
1≤j≤pn

√
nX̄j,n

Sj,n
.

In order to describe the critical value with which they compare
T̃n, for I ⊆ {1, . . . , pn} and γ ∈ ( 1

2 , 1), define

c̃n(I, γ ) ≡ inf
{

c ∈ R : P

{
max

j∈I

√
n(X̄∗

j,n − X̄j,n)

S∗
j,n

≤ c
∣∣∣{Xi}n

i=1

}

≥ γ

}
. (12)

Using this notation, the proposed test φCCK
n rejects whenever T̃n

exceeds c̃n(În, 1 − α + 2β), where

În ≡
{

1 ≤ j ≤ pn :
√

nX̄j,n

Sj,n
> −2c̃n({1, . . . , pn}, 1 − β)

}
,

α ∈ (0, 1
2 ) and 0 < β < α

2 , i.e.,

φCCK
n ≡ I{T̃n > c̃n(În, 1 − α + 2β)} . (13)

In our simulations, we also consider the test φCCK2
n defined as

above, but in which S∗
j,n in Equation (12) is replaced with Sj,n. It

is worth emphasizing that the formal analysis in Chernozhukov,
Chetverikov, and Kato (2019) concerns φCCK2

n , but we include
both tests in our simulations for completeness.

Allen (2018) showed that a version of the test in Romano,
Shaikh, and Wolf (2014) is more powerful than the preferred
test in Chernozhukov, Chetverikov, and Kato (2019) in the sense
that the former always rejects the null hypothesis whenever the
latter rejects the null hypothesis. An inspection of the proof of
Allen (2018) reveals that φRSW

n is more powerful than φCCK
n

in the sense that φRSW
n ≥ φCCK

n (with probability one) if one
employs a Gaussian multiplier bootstrap instead of the empirical
bootstrap. Similarly, it is also possible to show that a version
of φRSW

n that replaces S∗
j,n in Equations (6) and (7) with Sj,n,

which we denote by φRSW2
n , satisfies φRSW2

n ≥ φCCK2
n (with

probability one) provided that a Gaussian multiplier bootstrap
is used instead of the empirical bootstrap.

In order to gain some intuition for the power advantage of
Romano, Shaikh, and Wolf (2014), it is helpful to revisit the
arguments behind Allen (2018) in a stylized Gaussian model.

Specifically, suppose that Xi ∼ P = N(μ, �) with unknown
mean μ ∈ Rp and known p × p covariance matrix �. In this
setting, there is no need to bootstrap and when implementing
φCCK

n , we can replace c̃n(I, γ ) (as defined in Equation (12)) by
the quantile

c̃gn(I, γ ) ≡ inf
{

c ∈ R : P
{

max
j∈I

Zj

σj
≤ c

}
≥ γ

}

where Z ∼ N(0, �) and σj = σj(P). Further setting Îgn ≡ {1 ≤
j ≤ p :

√
nX̄j,n > −2σjc̃gn({1, . . . , p}, 1 − β)} and observing

that φCCK
n will not reject when T̃n < 0 it follows from Tn =

max{T̃n, 0} that in this context we have

φCCK
n = I

{
Tn > c̃gn(Îgn , 1 − α + 2β)

}
.

Analogously, when implementing φRSW
n we may replace ĉ(1)

n (1−
β) (as defined in Equation (8)) by c̃gn({1, . . . , p}, 1 − β) and
ĉ(2)

n (1 − α + β) (as defined in Equation (6)) by the quantile

cgn(1 − α + β) ≡ inf
{

c ∈ R : P
{

max

{
max

1≤j≤pn

Zj

σj
+

√
nûgj,n
σj

, 0

}

≤ c
∣∣∣{ûgj,n}p

j=1

}
≥ 1 − α + β

}
where

ûgj,n ≡ min
{

X̄j,n + σj√
n

c̃gn({1, . . . , p}, 1 − β), 0
}

.

Since φCCK
n = φRSW

n = 0 when Îgn = ∅ and both tests are based
on the statistic Tn, establishing φCCK

n ≤ φRSW
n is equivalent to

showing c̃gn(Îgn , 1 − α + 2β) ≥ cgn(1 − α + β) whenever Îgn �= ∅.
To this end, note

P

{
max

{
max

1≤j≤pn

Zj

σj
+

√
nûgj,n
σj

, 0

}
> c̃gn(Îgn , 1 − α + 2β)

}

≤ P

{
max
j∈Îgn

Zj

σj
+

√
nûgj,n
σj

> c̃gn(Îgn , 1 − α + 2β)

}

+ P

{
max

j∈{1,...,p}\Îgn

Zj

σj
+

√
nûgj,n
σj

> c̃gn(Îgn , 1 − α + 2β)

}

≤ P

{
max
j∈Îgn

Zj

σj
> c̃gn(Îgn , 1 − α + 2β)

}

+ P

{
max

j∈{1,...,p}\Îgn

Zj

σj
> c̃gn({1, . . . , p}, 1 − β)

}

≤ (α − 2β) + β , (14)

where: (i) the first inequality follows from the union bound and
c̃gn(Îgn , 1 − α + 2β) > 0; (ii) the second inequality follows from
ûn,j ≤ 0 for all j ∈ Îgn and

√
nûn,j ≤ −c̃gn({1, . . . , p}, 1 − β) for

all j ∈ {1, . . . , p} \ Îgn ; and (iii) the final inequality follows by the
set inclusion {1, . . . , p} \ Îgn ⊆ {1, . . . , p}. Thus, by definition of
cgn(1 − α + β), result (14) implies c̃gn(Îgn , 1 − α + 2β) ≥ cgn(1 −
α + β) and hence that φCCK

n ≤ φRSW
n as claimed.

The arguments in Allen (2018) further provide some intu-
ition as to the circumstances under which we should expect
φRSW

n to be strictly more powerful than φCCK
n . Specifically, we

highlight:
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1. On the set În of selected moments, the bootstrap approx-
imation employed in φCCK

n replaces
√

nμj(P) by 0, while
the bootstrap approximation employed in φRSW

n replaces√
nμj(P) by

√
nûn,j ≤ 0. For alternatives μ(P) such that

μj(P) is “small” in absolute value and negative for some 1 ≤
j ≤ p, we would expect

√
nûn,j to be strictly negative on

În with positive probability, leading to φCCK
n < φRSW

n with
positive probability—that is, the second inequality in (14)
would hold strictly (provided β > 0).

2. On the set {1, . . . , p} \ În of unselected moments, the boot-
strap approximation employed in φCCK

n replaces
√

nμj(P) by
−∞. In order for φCCK

n to have correct size in instances in
which

√
nμj(P) is “small” in absolute value but incorrectly

set to −∞, φCCK
n employs a 1 − α + 2β quantile as a critical

value. In contrast, the bootstrap approximation employed in
φRSW

n replaces
√

nμj(P) by
√

nûn,j, which remains valid with
probability 1 − β even when j ∈ {1, . . . , p} \ În. This distinc-
tion causes a power difference that we expect to be increasing
in β —that is, increasing β makes the final inequality in (14)
more likely to hold strictly due to {1, . . . , p} \ În being more
likely to be a “small” subset of {1, . . . , p}. Selecting a large
β is preferable for alternatives μ(P) for which

√
nμj(P) is

“large” in absolute value and negative for some 1 ≤ j ≤ p,
and hence we expect this power difference to be important in
those contexts.

Remark 2.3. In a working paper version (arXiv:1312.7614.v4),
Chernozhukov, Chetverikov, and Kato (2019) showed that their
tests are asymptotically minimax rate optimal when considering
alternatives P ∈ P1,n satisfying max

1≤j≤p
μj(P)/σj(P) ≥ rn for a

sequence rn. Combining such a result with the arguments in
Allen (2018) who provides conditions under which φCCK

n ≤
φRSW

n imply that the tests we consider inherit the minimax rate
optimality results established by Chernozhukov, Chetverikov,
and Kato (2019).

3. Simulations

In this section, we examine the finite-sample behavior of the test
of the null hypothesis in Equation (1) described in Section 2 via
a small simulation study. We also compare its behavior with tests
described in Section 2.1.

We begin by describing the distribution of Xi. Following
Chernozhukov, Chetverikov, and Kato (2019), we specify that

Xi,j = θ(I{1 ≤ j ≤ 0.05pn} + εi,j) − bI{0.1pn < j ≤ pn} + εi,j

for 1 ≤ i ≤ n and 1 ≤ j ≤ pn, where εi, i = 1, . . . , n are i.i.d.
with distribution N(0, �). We consider four different models,
which differ according to the values of b and �.

Model 1: b = 0, �j,k = 1 for 1 ≤ j, k ≤ pn with j = k and ρ

otherwise.
Model 2: b = 0.8, �j,k = 1 for 1 ≤ j, k ≤ pn with j = k and ρ

otherwise.
Model 3: b = 0, �j,k = ρ|j−k| for 1 ≤ j, k ≤ pn.
Model 4: b = 0.8, �j,k = ρ|j−k| for 1 ≤ j, k ≤ pn.

In Chernozhukov, Chetverikov, and Kato (2019), Models 1 and
2 are referred to as “equicorrelated” and Models 3 and 4 as “auto-
correlated.” For each model, we consider the following different
values of ρ, pn and θ : ρ ∈ {0, 0.5, 0.9}, pn ∈ {40, 100, 200},
and θ ∈ {0, 0.2}. In all designs, the sample size n is set to
equal one hundred, and all tests are implemented at an α =
0.05 nominal level. We do not consider non-Gaussian errors
or larger sample sizes here because our interest lies mainly in
examining the ability of the different tests to exploit components
of EP[Xi] that are strictly negative to increase power rather than
other aspects of the asymptotic approximations, which should
be common across all of the tests we consider. In all of our
specifications

EP[Xi,j] =
⎧⎨
⎩

θ if 1 ≤ j ≤ 0.05pn
−b if 0.1pn < j ≤ pn
0 otherwise

,

so the number of negative components of EP[Xi,j] is governed by
whether b = 0 or 0.8. Finally, we observe that the null hypothesis
is true when θ = 0 and the alternative hypothesis is true when
θ = 0.2. In this way, our designs permit us to study both the size
and power of the tests under consideration.

In our simulations below, we consider three different tests:

RSW: The test φRSW
n defined in (9).

RSW2: The test φRSW2
n described in Section 2.1.

CCK: The test φCCK
n defined in (13).

CCK2: The test φCCK2
n described in Section 2.1.

Recall that the only distinction between φRSW
n and φRSW2

n is
that the former employs S∗

j,n in the bootstrap samples, while the
latter employs Sj,n. The same distinction differentiates φCCK

n and
φCCK2

n . Following recommendations in Romano, Shaikh, and
Wolf (2014) and Chernozhukov, Chetverikov, and Kato (2019),
we first choose β = 0.005 when implementing φRSW

n and β =
0.001 when implementing φCCK

n and φCCK2
n . After discussing

these results, we examine the extent to which the comparisons
are robust to different choices of β for each test.

The results of our simulations are presented in Table 1.
Columns labeled “RSW” “RSW2” “CCK”, and “CCK2” display
rejection probabilities (in percentage points) for the corre-
sponding test. Columns labeled “≥CCK” and “≥CCK2” display,
respectively, the percentage of replications where φRSW

n ≥ φCCK
n

and φRSW2
n ≥ φCCK2

n . Rows correspond to different values
of pn ∈ {40, 100, 200} and ρ ∈ {0, 0.05, 0.9}. In all designs,
we use 10,000 replications and 1,000 bootstrap samples. We
emphasize that we employ the same bootstrap samples for all
tests. We also note that there are no appreciable differences in
the computation time of each test—for example, computing one
hundred replications of Model 1 with ρ = 0, p = 200, and one
thousand bootstrap draws took 97.303 seconds for φRSW

n and
95.202 seconds for φCCK

n on a single Intel Core i5-8500 3.00GHz
CPU.

We summarize our findings from the simulations as
follows:

• Both φRSW
n and φCCK

n exhibit good size control even in set-
tings where pn exceeds the sample size n = 100, but φCCK

n
tends to under-reject the null hypothesis more severely than
φRSW

n . See, for example, Model 2, p = 200, ρ = 0, and θ = 0,
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Table 1. Rejection probabilities and percentage of replications for which φRSW
n ≥ φCCK

n and φRSW2
n ≥ φCCK2

n . Tests φRSW
n and φRSW2

n implemented with β = 0.005 and
φCCK

n and φCCK2
n implemented with β = 0.001.

Results for Model 1

θ = 0 θ = 0.2

RSW RSW2 CCK CCK2 ≥CCK ≥CCK2 RSW RSW2 CCK CCK2 ≥CCK ≥CCK2
p = 40 ρ = 0 4.26 6.07 4.58 6.48 99.68 99.59 19.03 23.31 19.80 24.28 99.23 99.03

ρ = 0.5 4.62 5.96 4.91 6.24 99.71 99.72 12.52 15.01 13.02 15.54 99.50 99.47
ρ = 0.9 4.60 5.82 4.84 6.13 99.76 99.69 10.95 12.97 11.50 13.53 99.45 99.44

p = 100 ρ = 0 4.51 6.92 4.84 7.31 99.67 99.61 24.04 30.81 25.06 31.94 98.98 98.87
ρ = 0.5 4.24 6.30 4.61 6.63 99.63 99.67 13.86 17.79 14.51 18.61 99.35 99.18
ρ = 0.9 4.64 6.31 4.96 6.69 99.68 99.62 11.69 14.92 12.25 15.62 99.44 99.30

p = 200 ρ = 0 4.20 7.12 4.41 7.59 99.79 99.53 28.33 38.11 29.45 39.40 98.88 98.71
ρ = 0.5 4.37 6.59 4.64 7.02 99.73 99.57 15.04 20.11 15.90 20.94 99.14 99.17
ρ = 0.9 4.57 6.69 4.94 6.97 99.63 99.72 13.25 17.04 13.75 17.68 99.50 99.36

Results for Model 2
θ = 0 θ = 0.2

RSW RSW2 CCK CCK2 ≥CCK ≥CCK2 RSW RSW2 CCK CCK2 ≥CCK ≥CCK2
p = 40 ρ = 0 4.34 4.87 0.65 1.16 100.00 100.00 45.94 48.72 16.82 20.68 100.00 100.00

ρ = 0.5 3.62 4.30 0.73 0.89 100.00 100.00 22.33 26.22 9.69 11.92 100.00 100.00
ρ = 0.9 2.19 3.01 0.67 0.87 100.00 100.00 13.60 16.82 8.23 9.87 100.00 99.99

p = 100 ρ = 0 4.50 5.56 0.69 1.17 100.00 100.00 58.33 63.95 22.22 28.39 100.00 100.00
ρ = 0.5 3.11 4.20 0.78 1.02 100.00 100.00 24.36 30.86 12.03 15.48 100.00 100.00
ρ = 0.9 1.79 2.79 0.70 1.07 100.00 100.00 14.36 19.35 10.06 12.63 99.97 100.00

p = 200 ρ = 0 4.54 5.80 0.60 1.17 100.00 100.00 66.77 74.45 26.69 35.41 100.00 100.00
ρ = 0.5 3.05 4.50 0.69 1.14 100.00 100.00 26.03 34.57 14.43 19.44 100.00 100.00
ρ = 0.9 1.57 2.81 0.77 1.22 100.00 100.00 15.60 21.94 11.90 15.74 100.00 100.00

Results for Model 3
θ = 0 θ = 0.2

RSW RSW2 CCK CCK2 ≥CCK ≥CCK2 RSW RSW2 CCK CCK2 ≥CCK ≥CCK2
p = 40 ρ = 0 4.43 6.25 4.80 6.64 99.63 99.61 18.80 22.92 19.64 23.83 99.16 99.09

ρ = 0.5 4.52 5.88 4.78 6.16 99.74 99.72 18.14 21.55 18.80 22.19 99.34 99.36
ρ = 0.9 4.89 6.06 5.22 6.39 99.67 99.67 19.16 21.65 19.91 22.57 99.25 99.08

p = 100 ρ = 0 4.48 7.10 4.76 7.51 99.72 99.59 23.43 30.54 24.41 31.58 99.02 98.96
ρ = 0.5 4.52 6.83 4.83 7.15 99.69 99.68 21.38 27.08 22.20 28.03 99.18 99.05
ρ = 0.9 4.29 6.15 4.61 6.54 99.68 99.61 18.51 22.55 19.18 23.43 99.33 99.12

p = 200 ρ = 0 4.04 6.79 4.27 7.31 99.77 99.48 28.54 38.48 29.69 39.58 98.85 98.90
ρ = 0.5 4.46 7.08 4.76 7.53 99.70 99.55 25.51 33.66 26.31 34.84 99.20 98.82
ρ = 0.9 4.45 6.81 4.80 7.16 99.65 99.65 19.21 24.85 20.10 25.76 99.11 99.09

Results for Model 4
θ = 0 θ = 0.2

RSW RSW2 CCK CCK2 ≥CCK ≥CCK2 RSW RSW2 CCK CCK2 ≥CCK ≥CCK2
p = 40 ρ = 0 4.70 5.43 0.89 1.41 100.00 100.00 45.39 48.69 16.87 20.69 100.00 100.00

ρ = 0.5 4.46 4.84 0.78 1.48 100.00 100.00 40.66 43.51 15.02 17.96 100.00 100.00
ρ = 0.9 4.72 5.15 1.15 1.57 100.00 100.00 41.54 43.65 17.43 20.55 100.00 100.00

p = 100 ρ = 0 4.62 5.57 0.65 1.15 100.00 100.00 58.12 63.70 21.91 28.03 100.00 100.00
ρ = 0.5 4.40 5.24 0.62 1.16 100.00 100.00 48.96 53.78 19.28 24.01 100.00 100.00
ρ = 0.9 4.26 4.88 0.73 1.18 100.00 100.00 40.77 44.06 16.81 20.05 100.00 100.00

p = 200 ρ = 0 4.27 5.71 0.67 1.17 100.00 100.00 66.11 73.39 26.98 35.80 100.00 100.00
ρ = 0.5 4.16 5.37 0.61 0.99 100.00 100.00 55.93 62.82 22.42 29.96 100.00 100.00
ρ = 0.9 4.57 5.53 0.67 1.09 100.00 100.00 41.44 45.90 16.23 20.57 100.00 100.00

in which case φCCK
n has rejection probability 0.60%, whereas

φRSW
n has rejection probability 4.54%. In contrast, the tests

φRSW2
n and φCCK2

n have considerably worse size control, over-
rejecting the null hypothesis in some cases quite severely. See,
for example, Model 3, pn = 200, ρ = 0, and θ = 0, in
which case φRSW2

n has rejection probability 6.79% and φCCK2
n

has rejection probability 7.31%.
• The tests φRSW2

n and φCCK2
n are generally more powerful

than φRSW
n and φCCK

n , but this feature must be weighed
against their considerably worse size control. The test φRSW

n
is generally at least as powerful as φCCK

n , and, at times, quite

a bit more powerful. These instances tend to coincide with
the values of pn and ρ for which φCCK

n under-rejects the null
hypothesis. See, for example, Model 2, pn = 200, ρ = 0,
and θ = 0.2, in which case φCCK

n has rejection probability
only 26.69%, whereas φRSW

n has rejection probability 66.77%.
The comparison between φCCK2

n and φRSW2
n is qualitatively

similar.
• In nearly every replication, φRSW

n rejects the null hypothesis
whenever φCCK

n does and φRSW2
n rejects the null hypothesis

whenever φCCK2
n does. These results suggest that even though

the analysis in Allen (2018) require the use of a Gaussian
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Figure 1. Rej. prob. for β ∈ {0.001, . . . , 0.025} in Model 1, p = 100, ρ = 0.

Figure 2. Rej. prob. for β ∈ {0.001, . . . , 0.025} in Model 2, p = 100, ρ = 0.

multiplier bootstrap, they may also hold approximately when
employing the empirical bootstrap.

We conclude our simulation study by examining the extent
to which the comparisons described above are artifacts of the
differing choices of β used in implementing the various tests.
To this end, we computed for each specification the rejection
probabilities of all four tests at each β ∈ [0.001, 0.025] in
increments of 0.001. The results differ qualitatively depending
on whether the specification corresponds to Models 1 and 3
(in which there are no components of EP[Xi] that are strictly
negative both under the null and alternative) or Models 2 and 4
(in which many components of EP[Xi] are strictly negative both
under the null and alternative). We therefore only display one
specification for each of these two sets of results.

Figures 1 and 2 display the results for Models 1 and 2 with p =
100 and ρ = 0. In each figure, the panel on the left corresponds
to the case where θ = 0 and the panel on the right corresponds
to the case where θ = 0.2. Both figures provide further evidence
that for any common choice of β , φRSW

n rejects more often than
φCCK

n and φRSW2
n rejects more often than φCCK2

n . For all tests,
in Model 1, the choice of β that leads to the most powerful
test is given by the smallest choice of β—intuitively, in Model
1 there are no components of EP[Xi] that are strictly negative
and hence implementing moment selection (setting β > 0)
does not lead to a power gain. For the specification under Model

1, we therefore see that for any given choice of β for φRSW
n ,

there is a smaller choice of β for φCCK
n under which the two

tests have similar rejection probabilities under both the null and
alternative hypothesis. The same is true for φRSW2

n and φCCK2
n .

In accord with our discussion in Section 2.1, however, we do see
the power differences between the tests increase with β .

The results differ sharply for the specification under Model 2
(displayed in Figure 2). In that case, for any choice of β for φRSW

n ,
there is no choice of β for φCCK

n that makes φCCK
n more powerful:

Indeed, the maximum rejection probability of φCCK
n over all

values of β considered is smaller than the minimum rejection
probability of φRSW

n across all values of β considered. The same
is true for φRSW2

n and φCCK2
n . In accord with our discussion in

Section 2.1, these power differences manifest themselves in a
setting in which the alternative value for EP[Xi] has multiple
strictly negative components.

Appendix

Proof of Theorem 2.1. For any vector (λ1, . . . , λpn)′ ≡ λ ∈ Rpn ,
measure P, and x ∈ R define

Fn(x, λ, P) ≡ P
{

0∨√
n(X̄j,n−μj(P)+λj) ≤ xSj,n for all 1 ≤ j ≤ pn

}
Jn(x, λ, P) ≡ P

{√
n(X̄j,n − μj(P) + λj) ≤ xSj,n for all 1 ≤ j ≤ pn

}
,
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and for any function f : R → [0, 1] let f −1(x) ≡ inf{c : f (c) ≥ x} with
f −1(x) = +∞ whenever {c : f (c) ≥ x} is empty. Further define the
event 
n(P) according to


n(P) ≡ {
μj(P) ≤ ûj,n for all 1 ≤ j ≤ pn

}
, (A.1)

and note that, for (û1,n, . . . , ûpn,n)′ ≡ ûn ∈ Rpn , the event 
n(P)

implies Fn(x, μ(P), P̂n) ≥ Fn(x, ûn, P̂n) for all x ∈ R, which yields
F−1

n (x, μ(P), P̂n) ≤ F−1
n (x, ûn, P̂n) for all x ∈ [0, 1]. In particular, by

definition of ĉ(2)
n (1−α+β) we obtain that 
n(P) implies F−1

n (1−α+
β , μ(P), P̂n) ≤ ĉ(2)

n (1 − α + β), and hence Lemma A.1 yields

lim sup
n→∞

sup
P∈P0,n

P
{

Tn > ĉ(2)
n (1 − α + β)

}
(A.2)

≤ lim sup
n→∞

sup
P∈P0,n

P
{

Tn > ĉ(2)
n (1 − α + β); 
n(P)

}
+ β

≤ lim sup
n→∞

sup
P∈P0,n

P
{

Tn > F−1
n (1 − α + β , μ(P), P̂n)

}
+ β .

Next, note that Sj,n ≥ 0 almost surely implies Fn(x, λ, P) = Jn(x, λ, P)

for any λ, P, and x ≥ 0, while for any λ, P and x < 0 we have
Fn(x, λ, P) ≤ P{Sj,n = 0 for all 1 ≤ j ≤ pn}. Hence, it follows that

sup
x∈R

∣∣∣Fn(x, μ(P), P) − Fn(x, μ(P), P̂n)

∣∣∣
≤ sup

x≥0

∣∣∣Jn(x, μ(P), P) − Jn(x, μ(P), P̂n)

∣∣∣ + P
{

max
1≤j≤pn

Sj,n = 0
}

+ P̂n

{
max

1≤j≤pn
Sj,n = 0

}
,

which together with Lemmas A.2 and A.3 implies there are sequence
ξn ↓ 0 and δn ↓ 0 such that

inf
P∈Pn

P

{
sup
x∈R

∣∣∣Fn(x, μ(P), P) − Fn(x, μ(P), P̂n)

∣∣∣ ≤ ξn

}
≥ 1 − δn.

(A.3)
Moreover, since Fn(F−1

n (1 − α + β , μ(P), P̂n), μ(P), P̂n) ≥ 1 − α + β ,
it follows that{

sup
x∈R

∣∣∣Fn(x, μ(P), P) − Fn(x, μ(P), P̂n)

∣∣∣ ≤ ξn

}
(A.4)

⊆
{

Fn(F−1
n (1 − α + β , μ(P), P̂n), μ(P), P) ≥ 1 − α + β − ξn

}
⊆

{
F−1

n (1 − α + β , μ(P), P̂n) ≥ F−1
n (1 − α + β − ξn, μ(P), P)

}
.

Thus, since P{Tn ≤ x} = Fn(x, μ(P), P), results (A.3) and (A.4)
together establish that

lim sup
n→∞

sup
P∈P0,n

P
{

Tn > F−1
n (1 − α + β , μ(P), P̂n)

}

≤ lim sup
n→∞

sup
P∈P0,n

P
{

Tn > F−1
n (1 − α + β − ξn, μ(P), P)

}
+ δn

≤ lim sup
n→∞

α − β − ξn + δn. (A.5)

The claim of the theorem therefore follows from Equations (A.2), (A.5),
ξn ↓ 0, and δn ↓ 0.

Lemma A.1. Let Assumption 2.1 hold. If β ∈ (0, 0.5), then it follows
that

lim inf
n→∞ inf

P∈P0,n
P

{
μj(P) ≤ ûj,n for all 1 ≤ j ≤ pn

} ≥ 1 − β .

Proof. The proof follows from Lemma A.2 and arguments in the proof
of Lemma A.1 in Romano and Shaikh (2012). First note that for any
P ∈ P0,n we have μj(P) ≤ 0 for all 1 ≤ j ≤ pn, and therefore by
definition of ûj,n

P
{
μj(P) ≤ ûj,n for all 1 ≤ j ≤ pn

}
= P

{√
n(μj(P) − X̄j,n) ≤ Sj,nĉ(1)

n (1 − β)

for all 1 ≤ j ≤ pn

}
. (A.6)

Next, for any measure P we define the function Fn(·, P) : R → [0, 1] to
be given by

Fn(x, P) ≡ P
{√

n(μj(P) − X̄j,n) ≤ Sj,nx for all 1 ≤ j ≤ pn
}

. (A.7)

Then note that if {Xi}n
i=1 satisfies Assumption 2.1, then so does

{−Xi}n
i=1. Hence, we may apply Lemma A.2 to conclude there exist

sequences ξn ↓ 0 and δn ↓ 0 such that

inf
P∈Pn

P

{
sup
x≥0

∣∣∣Fn(x, P) − Fn(x, P̂n)

∣∣∣ ≤ ξn

}
≥ 1 − δn. (A.8)

Further let � denote the c.d.f. of a standard normal random variable
and note that Theorem 1.1. Bentkus and Götze (1996) and Assump-
tion 2.1(iii) imply

sup
P∈Pn

Fn(0, P) ≤ sup
P∈Pn

P
{√

n(μ1(P) − X̄1,n) ≤ S1,n × 0
}

≤ 0.5 + KM1,n√
n

(A.9)

for some finite constant K ∈ R. Next, for any f : R → [0, 1] let
f −1(x) ≡ inf{c : f (c) ≥ x} with f −1(x) = +∞ if {c : f (c) ≥ x} = ∅,
and define the event 
n(P) to be given by


n(P) ≡
{

sup
x≥0

∣∣∣Fn(x, P) − Fn(x, P̂n)

∣∣∣ ≤ ξn

}
. (A.10)

Then note that since β < 0.5 and M1,n/
√

n = o(1) by hypothesis,
result (A.9) implies that

sup
P∈Pn

Fn(0, P) + ξn < 1 − β (A.11)

for n sufficiently large. Therefore, the definitions of ĉ(1)
n (1 − β) and


n(P) yield


n(P) ⊆ {Fn(0, P̂n) < 1 − β} ⊆ {ĉ(1)
n (1 − β) ≥ 0} (A.12)

for n sufficiently large. Combining definition (A.10) and result (A.12)
further implies


n(P) ⊆
{

Fn(ĉ(1)
n (1 − β), P) ≥ Fn(ĉ(1)

n (1 − β), P̂n) − ξn
}

⊆
{

Fn(ĉ(1)
n (1 − β), P) ≥ 1 − β − ξn

}
⊆

{
ĉ(1)
n (1 − β) ≥ F−1

n (1 − β − ξn, P)
}

, (A.13)

where the second and third set inclusions follow by definition of
ĉ(1)
n (1−β) and F−1

n (·, P). Hence, results (A.6), (A.8), and the definitions
of F−1

n (·, P) and 
n(P) yield

lim inf
n→∞ inf

P∈P0,n
P

{
μj(P) ≤ ûj,n ∀1 ≤ j ≤ pn

}

≥ lim inf
n→∞ inf

P∈Pn
P
{√

n(μj(P) − X̄j,n) ≤ Sj,nF−1
n (1 − β − ξn, P)

∀1 ≤ j ≤ pn

}
− δn ≥ lim inf

n→∞ 1 − β − ξn − δn,

which establishes the claim of the lemma because ξn ↓ 0 and
δn ↓ 0.
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Lemma A.2. Let Assumption 2.1 hold and for any (λ1, . . . , λpn)′ ≡ λ ∈
Rpn− , P ∈ Pn, and x ∈ R define

Jn(x, λ, P) ≡ P
{√

n(X̄j,n − μj(P) + λj) ≤ xSj,n for all 1 ≤ j ≤ pn
}

.

Then, there exists a sequence ξn ↓ 0 such that

lim inf
n→∞ inf

P∈Pn
P

⎧⎨
⎩sup

x≥0
sup

λ∈Rpn−

∣∣∣Jn(x, λ, P̂n) − Jn(x, λ, P)

∣∣∣ ≤ ξn

⎫⎬
⎭ = 1.

Proof. We first note that σj(P) > 0 for all 1 ≤ j ≤ pn by Assump-
tion 2.1(ii) implies that

Jn(x, λ, P) = P
{√

n(X̄j,n − μj(P))

σj(P)
≤ x

Sj,n
σj(P)

−
√

nλj
σj(P)

for all 1 ≤ j ≤ pn

}

Jn(x, λ, P̂n) = P̂n

{√
n(X̄j,n − μj(P̂n))

σj(P)
≤ x

Sj,n
σj(P)

−
√

nλj
σj(P)

for all 1 ≤ j ≤ pn

}
.

Next, let (Z1, . . . , Zpn)′ ≡ Z ∈ Rpn be a Gaussian vector satisfying
E[Zj] = 0 and E[ZjZk] = EP[(Xi,j −μj(P))(Xi,k −μk(P))]/σj(P)σk(P)

for any 1 ≤ j, k ≤ pn, and for any measure P, (λ1, . . . , λpn)′ ≡ λ ∈ Rpn−
and (ω1, . . . , ωpn)′ ≡ ω ∈ Rpn satisfying ωj > 0 for all 1 ≤ j ≤ pn,
define Fn(x, λ, ω, P) and Gn(x, λ, ω, P) to equal

Fn(x, λ, ω, P) ≡ P

{√
n(X̄j,n − μj(P))

ωj
≤ x −

√
nλj
ωj

for all 1 ≤ j ≤ pn

}

(A.14)

Gn(x, λ, ω, P) ≡ P

{
Zj ≤ x −

√
nλj
ωj

for all 1 ≤ j ≤ pn

}
. (A.15)

Since B2
n log3.5(pn)/n(1−δ)/2 = o(1) for some δ > 0 by Assump-

tion 2.1(v), we may find an εn ↓ 0 satisfying

B2
n log2(pn)

n(1−δ)/2 = o(εn) log(pn)εn = o(1).

In particular, the condition B2
n log2(pn)/n(1−δ)/2 = o(εn) implies that

the sequence ηn defined by

ηn ≡ sup
P∈Pn

P

{
max

1≤j≤pn

∣∣∣∣∣ Sj,n
σj(P)

− 1

∣∣∣∣∣ > εn

}
(A.16)

satisfies ηn = o(1) by Lemma A.3(i). Moreover, by definitions (A.14)
and (A.16) we can conclude that

Fn(x(1 − εn), λ, σ(P), P) − ηn ≤ Jn(x, λ, P)

≤ Fn(x(1 + εn), λ, σ(P), P) + ηn (A.17)

for all x ≥ 0, P ∈ Pn, and λ ∈ Rpn− . Next note (M2
1,n ∨

M2
2,n ∨ B2

n) log3.5(pnn)/
√

n = o(1) by Assumption 2.1(v), Assump-
tions 2.1(i)(iii)(iv) and Proposition 2.1 in Chernozhukov, Chetverikov,
and Kato (2017) imply that

lim sup
n→∞

sup
P∈Pn

sup
x∈R

sup
λ∈Rpn−

|Fn(x, λ, σ(P), P) − Gn(x, λ, σ(P), P)| = 0.

(A.18)
On the other hand, we may further conclude by Lemma A.4 and
εn log(pn) = o(1) by construction that

lim sup
n→∞

sup
P∈Pn

sup
x≥0

sup
λ∈Rpn−

Gn((1+εn)x, λ, σ(P), P)−Gn((1−εn)x, λ, σ(P), P)

≤ lim sup
n→∞

sup
P∈Pn

sup
x≥0

sup
λ∈Rpn−

P

{∣∣∣∣∣ max
1≤j≤pn

Zj +
√

nλj

σj(P)
− x

∣∣∣∣∣ ≤ 2εnx

}
= 0.

(A.19)

Therefore, combining results (A.16)–(A.19) and employing that ηn =
o(1) we obtain

lim sup
n→∞

sup
P∈Pn

sup
x≥0

sup
λ∈Rpn−

|Jn(x, λ, P) − Gn(x, λ, σ(P), P)| = 0. (A.20)

To conclude the proof, we set M̄n ≡ M1,n ∨ M2,n ∨ Bn and define
the events 
1,n(P) and 
2,n(P) according to


1,n(P) ≡
{

P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
σj(P)

− 1

∣∣∣∣∣ > εn
∣∣∣{Xi}n

i=1

}
≤ K

nδ

}


2,n(P) ≡
{

sup
x∈R

sup
λ∈Rpn−

∣∣∣Fn(x, λ, σ(P), P̂n) − Gn(x, λ, σ(P), P)

∣∣∣

≤ K

(
M̄2

n log3.5(pnn)

n(1−δ)/2

)1/6 }

and note that for 
n(P) ≡ 
1,n(P) ∩ 
2,n(P), for appropriately
selected K < ∞, Lemma A.3(ii) and Proposition 4.3 in Chernozhukov,
Chetverikov, and Kato (2017) (applied with α = n−δ) allow us to
conclude that

lim inf
n→∞ inf

P∈Pn
P {
n(P)} = 1. (A.21)

Furthermore, observe that under 
n(P) we may argue as in result
(A.17) to obtain that for all x ≥ 0 and λ ∈ Rpn−

Jn(x, λ, P̂n) ≤ Fn((1 + εn)x, λ, σ(P), P̂n) + K
nδ

Jn(x, λ, P̂n) ≥ Fn((1 − εn)x, λ, σ(P), P̂n) − K
nδ

.

Therefore, employing results (A.19) and (A.21) imply that there exists
a sequence ξn ↓ 0 such that

lim inf
n→∞ inf

P∈Pn
P

⎧⎨
⎩sup

x≥0
sup

λ∈Rpn−
|Jn(x, λ, P̂n)−Gn(x, λ, σ(P), P)| ≤ ξn

⎫⎬
⎭=1.

(A.22)
The lemma thus follows from results (A.20) and (A.22).

Lemma A.3. Let Assumption 2.1(i), (ii) and (iv) hold. Then: (i) For any
sequence εn ↓ 0 satisfying B2

n log2(pn)/n(1−δ)/2 = o(εn) for some
δ ∈ (0, 1) it follows that

lim sup
n→∞

sup
P∈Pn

P

{
max

1≤j≤pn

∣∣∣∣∣ Sj,n
σj(P)

− 1

∣∣∣∣∣ > εn

}
= 0. (A.23)

(ii) For any εn ↓ 0 satisfying the condition of part (i) there is a K < ∞
such that

lim sup
n→∞

sup
P∈Pn

P

{
P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
σj(P)

− 1

∣∣∣∣∣ > εn
∣∣∣{Xi}n

i=1

}
≤ K

nδ

}
= 1.
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Proof. The first claim of the lemma corresponds to Lemma D.5 in
Chernozhukov, Chetverikov, and Kato (2019), which we may apply by
Assumptions 2.1(i), (ii) and (iv). In order to establish the second claim
of the lemma we first define the event


1,n(P) ≡
{

max
1≤j≤pn

∣∣∣∣∣ Sj,n
σj(P)

− 1

∣∣∣∣∣ ≤ εn
2

}
,

where εn satisfies B2
n log2(pn)/n(1−δ)/2 = o(εn) for some δ ∈ (0, 1) by

hypothesis. We further define B̂4
n ∈ R to equal

B̂4
n ≡ 1

n

n∑
i=1

max
1≤j≤pn

(
Xi,j − X̄j,n

Sj,n

)4

and note that since εn ↓ 0 it follows that, for n sufficiently large, 
1,n(P)

implies Sj,n is positive for all 1 ≤ j ≤ pn. Furthermore, Lemma D.5 in
Chernozhukov, Chetverikov, and Kato (2019) implies there are finite
positive K1, K2 ∈ R satisfying

I
{

1,n(P)

} × P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
Sj,n

− 1

∣∣∣∣∣ > K1
B̂2

n log2(pn)

n(1−δ)/2

∣∣∣{Xi}n
i=1

}

≤ I
{

1,n(P)

} × K2
nδ

. (A.24)

Moreover, the definition of the event 
1,n(P) and the inequality (a +
b)4 ≤ 8(a4 + b4) also yield that

I{
1,n(P)} × B̂4
n ≤ I{
1,n(P)} × max

1≤j≤pn

σ 4
j (P)

S4
j,n

× 1
n

n∑
i=1

max
1≤j≤pn

(
Xi,j − X̄j,n

σj(P)

)4

≤ 8
(

1 + εn
2

)4 × 1
n

n∑
i=1

⎛
⎝ max

1≤j≤pn

(
Xi,j − μj(P)

σj(P)

)4

+ max
1≤j≤pn

(
X̄j,n − μj(P)

σj(P)

)4
⎞
⎠ . (A.25)

Next note that for any sequence �n ↓ 0, Assumption 2.1(iv) and
Markov’s inequality imply that

lim sup
n→∞

sup
P∈Pn

P

⎧⎨
⎩ 1

n

n∑
i=1

max
1≤j≤pn

(
Xi,j − μj(P)

σj(P)

)4

>
B4

n
�n

⎫⎬
⎭ = 0.

(A.26)
Furthermore, since Bn ≥ 1 by Jensen’s inequality, we note that εn ↓
0 and the condition B2

n log2(pn)/n(1−δ)/2 = o(εn) together imply
that log2(pn)/n = o(1). Therefore, �n ↓ 0 and equation (73) in
Chernozhukov, Chetverikov, and Kato (2019) yield

lim sup
n→∞

sup
P∈Pn

P

⎧⎨
⎩ max

1≤j≤pn

∣∣∣∣∣ 1
n

n∑
i=1

Xi,j − μj(P)

σj(P)

∣∣∣∣∣
4

>
B4

n
�n

⎫⎬
⎭ = 0. (A.27)

Combining results (A.25)–(A.27), and that P{
1,n(P)} = 1 + o(1)

uniformly in P ∈ Pn by part (i) of this lemma, it follows that there
exists a constant K3 < ∞ independent of the sequence �n with

lim sup
n→∞

sup
P∈Pn

P

{
B̂4

n > K3
B4

n
�n

}
= 0.

Thus, by selecting �n ↓ 0 to satisfy B2
n log2(pn)/(

√
�nn(1−δ)/2) =

o(εn), which is possible due to B2
n log2(pn)/n(1−δ)/2 = o(εn) by

hypothesis, we are able to conclude from result (A.24) that

lim sup
n→∞

sup
P∈Pn

P

{
P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
Sj,n

− 1

∣∣∣∣∣ >
εn
4

∣∣∣{Xi}n
i=1

}
≤ K2

nδ

}
= 1.

(A.28)
Finally, note that for any (a1, . . . , apn)′ ∈ Rpn , we obtain by definition
of the event 
1,n(P) that

I{
1,n(P)} × max
1≤j≤pn

∣∣∣∣∣ aj
σj(P)

− 1

∣∣∣∣∣ ≤ I{
1,n(P)}

×
(

max
1≤j≤pn

∣∣∣∣∣ aj
Sj,n

− 1

∣∣∣∣∣ Sj,n
σj(P)

+ max
1≤j≤pn

∣∣∣∣∣ Sj,n
σj(P)

− 1

∣∣∣∣∣
)

≤ I{
1,n(P)} ×
(

max
1≤j≤pn

∣∣∣∣∣ aj
Sj,n

− 1

∣∣∣∣∣ (1 + εn
2

) + εn
2

)
. (A.29)

Thus, P{
1,n(P)} = 1 + o(1) uniformly in P ∈ Pn by part (i) of this
lemma, and results (A.28) and (A.29) imply

lim sup
n→∞

sup
P∈Pn

P

{
P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
σj(P)

− 1

∣∣∣∣∣ > εn
∣∣∣{Xi}n

i=1

}
≤ K2

nδ

}

≥ lim sup
n→∞

sup
P∈Pn

P

{
P

{
max

1≤j≤pn

∣∣∣∣∣
S∗

j,n
Sj,n

− 1

∣∣∣∣∣ >
εn
4

∣∣∣{Xi}n
i=1

}
≤ K2

nδ

}
= 1,

which establishes the second claim of the lemma.

Lemma A.4. Let (Z1, . . . , Zp)′ ≡ Z ∈ Rp be Gaussian with E[Zj] = 0
and E[Z2

j ] = 1 for all 1 ≤ j ≤ p, and (s1, . . . , sp) ≡ s ∈ Rp
−. Then,

there is a constant C < ∞ such that for all δ ∈ (0, 0.5] and t > 0:

sup
x≥0

P
{∣∣∣∣ max

1≤j≤p
(Zj + sj) − x

∣∣∣∣≤ δx
}

≤ Cδ(1+√
log(p)+t)2+exp

{
− t2

2

}
.

Proof. Let mp denote the median of max
1≤j≤p

Zj, and note that by Kwapień

(1994) mp ≤ E[ max
1≤j≤p

Zj]. Since in addition E[ max
1≤j≤p

Zj] ≤ √
2 log(p)

by Lemmas 2.2.1 and 2.2.2 in van der Vaart and Wellner (1996), we
obtain

mp ≤ √
2 log(p). (A.30)

Next, for any t > 0 we set a ≡ 2(
√

2 log(p)+ t) and observe the union
bound allows us to conclude that

sup
0≤x≤a

P
{∣∣∣∣ max

1≤j≤p
(Zj + sj) − x

∣∣∣∣ ≤ δx
}

≤ sup
0≤x≤a

P

{∣∣∣∣∣ max
1≤j≤p:sj≤−a/2

(Zj + sj) − x

∣∣∣∣∣ ≤ δx

}

+ sup
0≤x≤a

P

{∣∣∣∣∣ max
1≤j≤p:sj>−a/2

(Zj + sj) − x

∣∣∣∣∣ ≤ δx

}
. (A.31)

Moreover, we note that δ ∈ (0, 0.5] and x > 0 imply x(1− δ) > 0, and
hence we obtain

sup
0≤x≤a

P

{∣∣∣∣∣ max
1≤j≤p:sj≤−a/2

(Zj + sj) − x

∣∣∣∣∣ ≤ δx

}

≤ P

{
max

1≤j≤p:sj≤−a/2
(Zj + sj) ≥ 0

}

≤ P
{

max
1≤j≤p

Zj ≥ √
2 log(p) + t

}
≤ exp

{
− t2

2

}
, (A.32)
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where the second inequality holds by definition of a, while the final
inequality follows from Borell’s inequality (see, e.g., the Corollary in
pg. 82 of Davydov, Lifshits, and Smorodina 1998), result (A.30), and
1 − �(t) ≤ exp{−t2/2} for any t > 0 and � the c.d.f. of a standard
normal random variable. Next note that Lemma A.1 in Chernozhukov,
Chetverikov, and Kato (2017) yields

sup
0≤x≤a

P

{∣∣∣∣∣ max
1≤j≤p:sj>−a/2

(Zj + sj) − x

∣∣∣∣∣ ≤ δx

}
� δa

√
log(p).

(A.33)

Moreover, since sj ≤ 0 for all 1 ≤ j ≤ p and δ ≤ 0.5 we can additionally
conclude that

sup
x≥a

P
{∣∣∣∣ max

1≤j≤p
(Zj + sj) − x

∣∣∣∣ ≤ δx
}

≤ sup
x≥a

P
{

max
1≤j≤p

Zj ≥ x(1 − δ)

}

≤ P
{

max
1≤j≤p

Zj ≥ a
2

}
≤ exp

{
− t2

2

}
, (A.34)

where the final inequality follows by another application of Borell’s
inequality and the arguments employed in (A.32). The lemma follows
from (A.31), (A.32), (A.33), and (A.34).
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