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Abstract

In the context of a binary outcome, treatment, and instrument, Balke and Pearl (1993, 1997) es-

tablish that the monotonicity condition of Imbens and Angrist (1994) has no identifying power beyond

instrument exogeneity for average potential outcomes and average treatment effects in the sense that

adding it to instrument exogeneity does not decrease the identified sets for those parameters whenever

those restrictions are consistent with the distribution of the observable data. This paper shows that this

phenomenon holds in a broader setting with a multi-valued outcome, treatment, and instrument, under

an extension of the monotonicity condition that we refer to as generalized monotonicity. We further show

that this phenomenon holds for any restriction on treatment response that is stronger than generalized

monotonicity provided that these stronger restrictions do not restrict potential outcomes. Importantly,

many models of potential treatments previously considered in the literature imply generalized monotonic-

ity, including the types of monotonicity restrictions considered by Kline and Walters (2016), Kirkeboen

et al. (2016), and Heckman and Pinto (2018), and the restriction that treatment selection is determined

by particular classes of additive random utility models. We show through a series of examples that

restrictions on potential treatments can provide identifying power beyond instrument exogeneity for av-

erage potential outcomes and average treatment effects when the restrictions imply that the generalized

monotonicity condition is violated. In this way, our results shed light on the types of restrictions required

for help in identifying average potential outcomes and average treatment effects.
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1 Introduction

In their analysis of a setting with a binary outcome, treatment, and instrument, Balke and Pearl (1993, 1997)

establish that the monotonicity condition of Imbens and Angrist (1994) has no identifying power beyond

instrument exogeneity for average potential outcomes and the average treatment effect (ATE). Here, by no

identifying power beyond instrument exogeneity, we mean that adding the monotonicity condition of Im-

bens and Angrist (1994) to instrument exogeneity does not decrease the identified sets for those parameters

whenever those restrictions are consistent with the distribution of the observable data.1 In this way, their

results contrast with the analysis of Imbens and Angrist (1994), who showed that their monotonicity condi-

tion and instrument exogeneity permitted identification of the local average treatment effect (LATE). This

paper studies the extent to which this phenomenon holds in the broader context of a multi-valued outcome,

treatment, and instrument.

We show that a generalization of the monotonicity condition of Imbens and Angrist (1994) to this

richer setting also has no identifying power beyond instrument exogeneity for average potential outcomes

and ATEs. We hereafter refer to this condition more succinctly as generalized monotonicity. We show

further that this result remains true for any restriction that is in fact stronger than generalized monotonicity

provided that these stronger restrictions do not restrict potential outcomes in a sense that we will make

precise later. This feature of our results is remarkable because one might expect stronger restrictions,

possibly with very complicated restrictions on potential treatments that are difficult to fully characterize, to

reduce the identified set at least in some instances, but we show that this is not the case. Using this result,

our analysis accommodates many examples of restrictions on potential treatments that have been previously

considered in the literature. In particular, we show that encouragement designs, the types of monotonicity

restrictions considered by Kline and Walters (2016), Kirkeboen et al. (2016), and Heckman and Pinto (2018),

and certain additive random utility models, including some studied in Lee and Salanié (2023), all satisfy

generalized monotonicity.

In establishing our results, we derive the identified sets for average potential outcomes under any such

restriction and instrument exogeneity while maintaining the assumption that these restrictions are consistent

with the distribution of the observable data. Our derivations reveal that the form of the resulting identified

sets parallels the form of those derived by Balke and Pearl (1993, 1997) for a binary outcome, treatment, and

instrument. An implication of the form of the identified sets is that average potential outcomes and ATEs

are only identified under an identification-at-infinity-type condition when imposing instrument exogeneity

and any such restriction. In our analysis, we also derive the identified sets for average potential outcomes

and ATEs when imposing instrument exogeneity alone whenever the distribution of the observable data is

consistent with instrument exogeneity and generalized monotonicity. As we explain in Example 4.1, this

consistency is necessarily satisfied, for example, in the context of a multi-arm randomized controlled trial

with one-sided non-compliance when defining the instrument to be random assignment to a given treatment

arm.

1For settings with possibly non-binary outcomes, Kitagawa (2021) shows this phenomenon continues to hold for any param-
eter that is a function of the marginal distributions of potential outcomes.
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Our results further provide necessary conditions on restrictions on potential treatments to help in iden-

tifying average potential outcomes and ATEs. See Theorem 3.3 and the subsequent discussion for details.

We illustrate this phenomenon through a series of examples of models that need not satisfy generalized

monotonicity and have identifying power for average potential outcomes and ATEs.

Our paper differs from the closely related literature that, in the context of a binary outcome, treatment,

and instrument, considers the identifying power of the monotonicity condition of Imbens and Angrist (1994)

and instrument exogeneity for the distribution (as opposed to the average) of potential outcomes, or considers

the identifying power of these conditions when combined with additional restrictions on potential outcomes.

In particular, Kamat (2019) shows that the monotonicity condition of Imbens and Angrist (1994) does have

identifying power beyond instrument exogeneity for the (joint) distribution of potential outcomes. Machado

et al. (2019) show that the monotonicity condition of Imbens and Angrist (1994) does have additional

identifying power for the ATE beyond instrument exogeneity if one additionally imposes an assumption that

requires potential outcomes to vary monotonically with the treatment. Thus, the phenomenon we explore is

sensitive to both the choice of parameter and to whether one imposes assumptions on potential outcomes.

The remainder of the paper is organized as follows. Section 2 introduces our formal setup, notation

and assumptions, including our generalized monotonicity condition. Our main identification results are

presented in Section 3. In Section 4, we provide several examples of restrictions on potential treatments that

imply our generalized monotonicity condition, and are thus examples of restrictions that have no identifying

power beyond instrument exogeneity for average potential outcomes or ATEs. In contrast, in Section 5, we

provide several examples of restrictions on potential treatments that imply that our generalized monotonicity

condition does not hold, and further show that some of these restrictions in fact have identifying power beyond

instrument exogeneity for average potential outcomes and ATEs. Proofs of all results can be found in the

Appendix.

2 Setup and Notation

Denote by Y ∈ Y a multi-valued outcome of interest, by D ∈ D a multi-valued endogenous regressor, and

by Z ∈ Z a multi-valued instrumental variable.2 To rule out degenerate cases, we assume throughout that

2 ≤ |Y| < ∞, 2 ≤ |D| < ∞, and 2 ≤ |Z| < ∞. Further denote by Yd ∈ Y the potential outcome if D = d ∈ D
and by Dz ∈ D the potential treatment if Z = z ∈ Z. We impose the usual consistency assumption,

Y =
∑
d∈D

Yd1{D = d} and D =
∑
z∈Z

Dz1{Z = z} . (1)

Let P denote the distribution of (Y,D,Z) and Q denote the distribution of ((Yd : d ∈ D), (Dz : z ∈ Z), Z).

Note that (1) defines a mapping T through

(Y,D,Z) = T ((Yd : d ∈ D), (Dz : z ∈ Z), Z) ,

2Our restriction to a multi-valued Y facilitates exposition, but is not essential. At the expense of slightly more complicated
arguments, we can accommodate more generally any real-valued Y .
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and therefore P = QT−1. In what follows, we will say that a given Q rationalizes a given P if P = QT−1.

Below we will require that Q ∈ Q, where Q is a class of distributions satisfying assumptions that we will

specify. Different choices of Q represent different assumptions that we impose on the distribution of potential

outcomes and potential treatments. In this sense, Q may be viewed as a model for potential outcomes and

potential treatments.

Given P and a model Q, the set of Q ∈ Q that can rationalize P is

Q0(P,Q) = {Q ∈ Q : P = QT−1} ,

i.e., the pre-image of P under T . We say Q is consistent with P if and only if Q0(P,Q) ̸= ∅. We will start

by considering models Q for which every Q ∈ Q satisfies

Assumption 2.1 (Instrument Exogeneity). ((Yd : d ∈ D), (Dz : z ∈ Z)) ⊥⊥ Z under Q.

Our final result on the identifying power of generalized monotonicity will also apply to the weaker exogeneity

restriction in Richardson and Robins (2013) that avoids the “cross-world” restrictions of Assumption 2.1;

see Assumption 3.3 and Corollary 3.3 below in Section 3.2. If Q satisfies Assumption 2.1, then

pyd|z := P{Y = y,D = d | Z = z} = Q{Yd = y,Dz = d | Z = z} = Q{Yd = y,Dz = d} . (2)

Since the marginal distribution of Z under P and Q are the same, i.e., for all z ∈ Z,

P{Z = z} = Q{Z = z} ,

P = QT−1 if and only if (2) holds. Thus, if all Q ∈ Q satisfies Assumption 2.1, then Q0(P,Q) can be

simplified as

Q0(P,Q) =

{
Q ∈ Q : pyd|z = Q{Yd = y,Dz = d} for all y ∈ Y, d ∈ D, z ∈ Z

}
. (3)

Let θ(Q) = (EQ[Yd] : d ∈ D) denote the vector of average potential outcomes. For fixed P and Q, the

identified set for θ(Q) under P relative to Q is given by

Θ0(P,Q) := {θ(Q) : Q ∈ Q0(P,Q)} .

Θ0(P,Q) is nonempty whenever Q0(P,Q) is nonempty. By construction, this set is “sharp” in the sense

that for any value in the set there exists Q ∈ Q0(P,Q) for which θ(Q) equals the prescribed value. The

identified set for θ(Q) immediately implies that the identified set for any parameter λ = λ(θ) is given by

λ(Θ0(P,Q)). An important example is EQ[Yj ]− EQ[Yk], the ATE for treatment j versus treatment k.

In the next section, we consider identification in any model of potential treatments that implies the

following restriction on all Q ∈ Q:
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Assumption 2.2 (Generalized Monotonicity). For each d ∈ D, there exists z∗ = z∗(d,Q) ∈ Z such that

Q{Dz∗ ̸= d, Dz′ = d for some z′ ̸= z∗} = 0 . (4)

In what follows, we refer to Assumption 2.2 as generalized monotonicity. It states that under Q, for each

treatment status d ∈ D, there exists a value (possibly depending on d and Q) of the instrument z∗ ∈ Z that

maximally encourages all individuals to d. Here, by “maximally encourage”, we mean that if an individual

does not choose d when Z = z∗, then they never choose d for any other value of Z. Equivalently, if an

individual chooses d when Z is equal to any value other than z∗, then they have to choose d when Z = z∗.

When D = Z = {0, 1}, Assumption 2.2 is equivalent to the monotonicity assumption of Imbens and Angrist

(1994).

We emphasize that Assumption 2.2 only requires, for each possible value of the treatment, that there

exists a value of the instrument that maximally encourages that treatment; it does not require that the value

of the instrument is unique. For a given distribution Q and given treatment d ∈ D, let Z∗(d,Q) denote the

set of z∗ that satisfy (4). In this notation, Assumption 2.2 can be restated as Z∗(d,Q) ̸= ∅ for each d ∈ D.

In the statement of Assumption 2.2, z∗(d,Q) is allowed to change across Q. The following lemma shows that

Z∗(d,Q) is identified from P and is hence the same for all Q that rationalizes P and satisfies Assumptions

2.1 and 2.2. In what follows, we will therefore write Z∗(d) and z∗(d) whenever the given distribution Q

rationalizes P and satisfies Assumptions 2.1 and 2.2. This result generalizes the corresponding result in

Imbens and Angrist (1994).

Lemma 2.1. Suppose Q satisfies Assumptions 2.1 and 2.2 and P = QT−1. Then, z ∈ Z∗(d,Q) if and only

if

P{D = d | Z = z} ≥ P{D = d | Z = z′} for all z′ ∈ Z . (5)

Below we prove the necessity of (5); sufficiency is established in the appendix. Note that, for any d ∈ D,

z′ ∈ Z, and any z ∈ Z∗(d,Q),

P{D = d | Z = z} = Q{Dz = d}

= Q{Dz = d,Dz′ = d}+Q{Dz = d,Dz′ ̸= d}

= Q{Dz′ = d}+Q{Dz = d,Dz′ ̸= d}

≥ Q{Dz′ = d}

= P{D = d | Z = z′} ,

where the first and last equalities exploit Assumption 2.1, and the third equality uses Assumption 2.2.
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3 Main Result

In order to describe our main result, we first introduce some further notation. Denote byQ∗
E (where E stands

for exogeneity) the set of all distributions that satisfy Assumption 2.1 and by Q∗
E,M (where M stands for

generalized monotonicity) the set of all distributions that satisfy Assumptions 2.1 and 2.2. We will further

require that the model does not restrict potential outcomes in the following sense:

Assumption 3.1 (Unrestricted Potential Outcomes). Let Q ∈ Q and Q′ ∈ Q∗
E . If the distributions of

(Dz : z ∈ Z) under Q and Q′ are the same, then Q′ ∈ Q.

In terms of this notation, our main result can be stated as follows:

Theorem 3.1. Suppose Q ⊆ Q∗
E,M and Q satisfies Assumption 3.1. Then, for any P such that Q0(P,Q) ̸=

∅, we have Θ0(P,Q) = Θ0(P,Q
∗
E,M ) = Θ0(P,Q

∗
E).

Theorem 3.1 describes the sense in which restrictions on potential treatments stronger than generalized

monotonicity have no identifying power for average potential outcomes and ATEs provided that these stronger

restrictions do not restrict potential outcomes. This result is established through Theorems 3.2 and 3.3

below. Theorem 3.2, developed in Section 3.1, characterizes Θ0(P,Q) for any model Q that is stronger

than Assumptions 2.1 and 2.2, i.e., Q ⊆ Q∗
E,M , and does not restrict potential outcomes in the sense of

Assumption 3.1. The result shows, in particular, that Θ0(P,Q) = Θ0(P,Q
∗
E,M ) for any such model Q

whenever Q0(P,Q) ̸= ∅. Remarkably, this result holds even if the model Q is strictly more restrictive than

Assumptions 2.1 and 2.2 in the sense that Q ⫋ Q∗
E,M . On the other hand, Theorem 3.3 and Corollary 3.2,

developed in Section 3.2, show that Θ0(P,Q
∗
E,M ) = Θ0(P,Q

∗
E) whenever Q0(P,Q

∗
E,M ) ̸= ∅. Together, these

results immediately imply Theorem 3.1. In fact, Theorem 3.3 shows the stronger result that if a submodel

of instrument exogeneity and generalized monotonicity is consistent with P , then any model sandwiched

between this submodel and the model that only assumes mean independence leads to the same identified

set for average potential outcomes and ATEs. This observation allows us to establish that generalized

monotonicity also has no identifying power for average potential outcomes and ATEs beyond the weaker

exogeneity restriction of Richardson and Robins (2013).

3.1 Identified Sets for Q ⊆ Q∗
E,M

For d ∈ D and z ∈ Z, define βd|z = EP [Y 1{D = d} | Z = z]. In addition, define yL = min(Y) and

yU = max(Y). The following theorem derives the identified set for θ(Q), relative to any model that assumes

instrument exogeneity and generalized monotonicity but does not restrict potential outcomes. Note in

particular that the assumptions allow for Q ⫋ Q∗
E,M , in which case the model assumes strictly more than

instrument exogeneity and generalized monotonicity.

Theorem 3.2. Suppose Q ⊆ Q∗
E,M and Q satisfies Assumption 3.1. Then, for any P such that Q0(P,Q) ̸=

∅,

Θ0(P,Q) =
∏
d∈D

βd|z∗(d) + yL(1−
∑
y∈Y

pyd|z∗(d))), βd|z∗(d) + yU (1−
∑
y∈Y

pyd|z∗(d)))

 . (6)
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We now describe some intuition for Theorem 3.2. Note that the distribution of the data, P , only contains

information on the distribution of Yd for those individuals who would take treatment d for some value of the

instrument. On the other hand, it contains no information on the distribution of Yd for those individuals

who would not take that treatment for any value of the instrument. Assumption 2.2 implies that individuals

would take treatment d at some value of the instrument if and only if Dz∗(d) = d, i.e., when maximally

encouraged to do so. Assumption 2.1 implies βd|z∗(d) = EQ[1{Dz∗(d) = d}Yd], and thus captures all the

information from P relevant to EQ[Yd], which is the first part of the lower and upper bounds in (6). In

contrast, Assumptions 2.1 and 2.2 imply that the probability that an individual would not take treatment

d for any value of Z is identified from P to be Q{Dz∗(d) ̸= d} = 1 −
∑

y∈Y pyd|z∗(d), but P contains no

information on the distribution of Yd for such individuals. Furthermore, that Q satisfies Assumption 3.1

implies that the model does not restrict the distribution of Yd for such individuals beyond y ∈ Y, so that we

can set Yd to be any value between yL and yU for these individuals, which constitutes the second part of the

upper and lower bounds in (6).

Remark 3.1. Under the instrument exogeneity and monotonicity assumptions of Imbens and Angrist (1994),

Balke and Pearl (1993, 1997) found the same form of the identified set for θ(Q) as (6) when Y = D = Z =

{0, 1}. Theorem 3.2 therefore generalizes the result of Balke and Pearl (1993, 1997) to more than two

treatment arms and instrument values, to outcomes taking more than two values, and, more surprisingly, to

show that the same identified set holds when imposing possibly stronger restrictions on potential treatments

than generalized monotonicity.

Theorem 3.2 immediately implies the following result on the identified sets for the ATE of treatment j

versus k:

Corollary 3.1. Under the assumptions of Theorem 3.2, the identified set for EQ[Yj − Yk] is given by:

[
(βj|z∗(j) − βk|z∗(k)) + (yL − yU ) + yU

∑
y∈Y

pyk|z∗(k) − yL
∑
y∈Y

pyj|z∗(j) ,

(βj|z∗(j) − βk|z∗(k)) + (yU − yL) + yL
∑
y∈Y

pyk|z∗(k) − yU
∑
y∈Y

pyj|z∗(j)

]
. (7)

e

Remark 3.2. From Corollary 3.1, the width of the identified set for EQ[Yj − Yk] under the assumptions of

Theorem 3.2 is given by

(yU − yL) (P{D ̸= j | Z = z∗(j)}+ P{D ̸= k | Z = z∗(k)}) ,

which, following Lemma 2.1, equals

(yU − yL)

(
min
z∈Z

P{D ̸= j | Z = z}+min
z∈Z

P{D ̸= k | Z = z}
)

.

Therefore, when imposing generalized monotonicity, as well as when imposing any restriction implying

generalized monotonicity, the ATE of j versus k is only identified “at infinity” (Heckman, 1990; Andrews
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and Schafgans, 1998) in the sense that identification requires

min
z∈Z

P{D ̸= j | Z = z} = min
z∈Z

P{D ̸= k | Z = z} = 0 . (8)

In other words, identification of the the ATE of j versus k under generalized monotonicity or under any

restriction implying generalized monotonicity requires that there is some value of the instrument such that

everyone takes treatment j at that value of the instrument, and some value of the instrument such that

everyone takes treatment k at that value of the instrument. In contrast, by imposing restrictions on potential

treatments that imply that generalized monotonicity is violated, the ATE can sometimes be identified without

(8) even when potential outcomes are unrestricted; see Example 5.1 in Section 5 below.

3.2 Identifying Power of Generalized Monotonicity

Theorem 3.2 above establishes that, for possibly multi-valued Y , D, and Z, and any model Q ⊆ Q∗
E,M such

that Q does not restrict the potential outcomes, if Q0(P,Q) ̸= ∅, then Θ0(P,Q) equals (6). We now show

that Θ0(P,Q
∗
E,M ) = Θ0(P,Q

∗
E) as long as Q0(P,Q

∗
E,M ) ̸= ∅, so that the identified set for θ(Q) assuming

instrument exogeneity and generalized monotonicity coincides with the identified set assuming instrument

exogeneity alone, as long as both assumptions are consistent with the distribution of the observed data. Our

result therefore generalizes Balke and Pearl (1993, 1997), which study the case of binary Y , Z, and D.

In order to do so, we consider a mean independence assumption even weaker than Assumption 2.1, and

show the identified set under this even weaker assumption is also (6). A sandwich argument will then lead

to our desired result. In particular, we first establish that the identified set for θ(Q) in (6) coincides with

the identified set under the weaker mean independence assumption considered by Robins (1989) and Manski

(1990):

Assumption 3.2 (Mean Independence). EQ[Yd | Z = z] = EQ[Yd] for all d ∈ D and z ∈ Z.

Note Assumption 3.2 is weaker than instrument exogeneity in Assumption 2.1, and does not imply (2).

Let Q∗
MI denote the set of all Q that satisfies Assumption 3.2 (where MI stands for mean independence).

Following Robins (1989) and Manski (1990), the following lemma derives the identified set for θ(Q) under

mean independence:

Lemma 3.1. Suppose Q0(P,Q
∗
MI ) ̸= ∅. Then,

Θ0(P,Q
∗
MI ) =

∏
d∈D

max
z∈Z

{βd|z + yL(1−
∑
y∈Y

pyd|z)}, min
z∈Z

{βd|z + yU (1−
∑
y∈Y

pyd|z)}

 . (9)

The following lemma, which relies on the observation in Lemma 2.1, establishes the equivalence between

the identified sets in (6) and (9) when Q0(P,Q
∗
E,M ) ̸= ∅.

Lemma 3.2. Suppose Q ⊆ Q∗
E,M , Q satisfies Assumption 3.1, and P is such that Q0(P,Q) ̸= ∅. Then,

the sets in (6) and (9) coincide.
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Using Lemma 3.2, we are able to establish our desired result, which asserts that, maintaining Assumption

2.1, additionally imposing Assumption 2.2 either causes the identified set for θ(Q) to become empty (if those

assumptions are not consistent with P ) or leaves the identified set for θ(Q) unchanged (if those assumptions

are consistent with P ). In fact, we will establish a stronger result, that if a submodel of instrument exogeneity

and generalized monotonicity is consistent with P , then any model sandwiched between this submodel and

the model that only assumes mean independence leads to the same identified set for θ(Q).

Theorem 3.3. Suppose Q ⊆ Q∗
E,M and Q satisfies Assumption 3.1. Further suppose Q′ satisfies

Q ⊆ Q′ ⊆ Q∗
MI .

Then, for any P such that Q0(P,Q) ̸= ∅,

Θ0(P,Q) = Θ0(P,Q
′) = Θ0(P,Q

∗
MI ) .

Remark 3.3. Theorem 3.3 implies that in order for a model to have identifying power for average potential

outcomes, it has to be the case that the model does not contain a submodel of instrument exogeneity and

generalized monotonicity that is consistent with P . In other words, the model has to contradict Assumption

2.1 or 2.2. We illustrate this observation in Example 5.1 below.

Corollary 3.2. For any P such that Q0(P,Q
∗
E,M ) ̸= ∅, Θ0(P,Q

∗
E,M ) = Θ0(P,Q

∗
E).

Remark 3.4. An implication of Corollary 3.2 is that the identified set for θ(Q) under Assumption 2.1

alone will be (6), regardless of whether Assumption 2.2 is imposed, as long as the distribution of the data is

consistent with Assumptions 2.1 and 2.2.

Theorem 3.3 further implies that under the following weaker exogeneity assumption, generalized mono-

tonicity also has no identifying power for average potential outcomes and ATEs:

Assumption 3.3 (Weak Instrument Exogeneity). Under Q, (Yd, Dz) ⊥⊥ Z for all d ∈ D, z ∈ Z.

See Richardson and Robins (2013) for an analysis of alternative exogeneity restrictions, and in particular

how Assumption 3.3 avoids the “cross-world” restrictions of the stronger joint independence in Assumption

2.1. Denote by Q∗
WE the set of all distributions that satisfy Assumption 3.3 and Q∗

WE ,M the set of all

distributions that satisfy Assumptions 3.3 and 2.2.

Corollary 3.3. For any P such that Q0(P,Q
∗
WE ,M ) ̸= ∅, Θ0(P,Q

∗
WE ,M ) = Θ0(P,Q

∗
WE ).

4 Examples of Models That Satisfy Assumption 2.2

We now consider some restrictions on potential treatments that have been considered previously in the

literature. In each case, we showQ ⊆ Q∗
E,M ; in particular, these restrictions satisfy generalized monotonicity.

We emphasize that frequently Q ⫋ Q∗
E,M . In what follows, it is implicitly understood that Assumption 3.1 is

8



satisfied, so that the model imposes no restriction on potential outcomes. Thus, in each example Theorem 3.1

applies and such restrictions do not provide any identifying power for average potential outcomes or ATEs.

In Appendix C, we consider three additional examples: an RCT with a “close substitute” as considered in

Kline and Walters (2016); the monotonicity and “irrelevance” assumptions considered in Kirkeboen et al.

(2016); and an additive random utility model for a binary treatment.

Example 4.1. Consider a multi-arm randomized controlled trial (RCT) with noncompliance, where Z = d

denotes random assignment to treatment d, Dd = d denotes that the subject would comply with assignment

if assigned to treatment d, and |D| = |Z|. More generally, not necessarily in the context of an RCT, one can

interpret Z = d as encouragement to treatment d and interpret Dd = d as the subject would take treatment

d if encouraged to do so. In this example, Q satisfies Assumption 2.1 because Z is randomly assigned. We

may generalize the “no-defier” restriction of Angrist et al. (1996) as: for each d ∈ D,

Q{Dd ̸= d, Dd′ = d for some d′ ̸= d} = 0 ,

i.e., there is zero probability that a subject would not take treatment d if assigned to (encouraged to take) d

but would take d if assigned (encouraged) to some other treatment d′ ̸= d. If Q satisfies this generalized no-

defier restriction, then Assumption 2.2 holds with z∗(d) = d for all d. This no-defier restriction in particular

holds in the context of an RCT with “one-sided non-compliance,” where we assume

Q{Dz ∈ {0, z}} = 1 ,

for all z ∈ Z. Here, non-compliance is one-sided because one can fall back to the control group if assigned

to d but cannot choose d if assigned to the control group.

Remark 4.1. As explained in Example 4.1, in a multi-arm RCT with one-sided noncompliance, P will

necessarily be consistent with Assumptions 2.1 and 2.2, i.e., Q(P,QE,M ) ̸= ∅. Following Remark 3.4,

Theorem 3.3 therefore implies that the identified set for θ(Q) under Assumption 2.1 alone will be (6) for

such a multi-arm RCT. A further implication is that the identified set under Assumption 2.1 on E[Yj−Yk] for

a multi-arm RCT with one-sided noncompliance depends only on the treatment arms for random assignment

to treatments j and k.

Example 4.2. Cheng and Small (2006) consider an RCT with noncompliance where D = Z = {0, 1, 2}.
Assumption 2.1 continues to hold because Z is randomly assigned. In such a setting, they develop bounds

on average effects within subgroups defined by potential treatments which, following the terminology of

Frangakis and Rubin (2002), they call “principal strata.” While Bai et al. (2025a) derives the identified

sets for those parameters given their assumptions, we now use our analysis to consider instead identification

of average potential outcomes and ATEs given their assumptions. Their “Monotonicity I” assumption is

equivalent to one-sided noncompliance in the preceding example. Their “Monotonicity II” assumption states

that subjects who would comply with assignment to treatment 2 would also comply with assignment to

treatment 1, so that

Q{D1 = 1 | D2 = 2} = 1 .
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They argue that such an assumption is plausible in a medical context when treatment 1 has fewer side effects

than treatment 2, and in their application to treatments for alcohol dependence, in which complying with

treatment 1 (compliance enhancement therapy) requires less effort by subjects than complying with treatment

2 (cognitive behavioural therapy). Because their Monotonicity I restriction implies our Assumption 2.2, so

does imposing both their Monotonicity I and II restrictions.

Example 4.3. Suppose Q satisfies Assumption 2.1. Heckman and Pinto (2018) define “unordered mono-

tonicity” as the assumption that, for any d ∈ D, and any z, z′ ∈ Z,

Q{1{Dz = d} ≥ 1{Dz′ = d}} = 1 or Q{1{Dz = d} ≤ 1{Dz′ = d}} = 1 . (10)

Assumption 2.2 holds for any Q that satisfies (10). To see this, note that Assumption 2.2 can be expressed

as the requirement that for each d ∈ D, there exists z∗(d) ∈ Z such that

Q{1{Dz∗(d) = d} ≥ 1{Dz = d}} = 1 for all z ∈ Z ,

which is immediately implied by (10). Note, however, that Z∗(d) may not be a singleton unless some

inequalities in (10) are strict.

Remark 4.2. Although unordered monotonicity implies Assumption 2.2, the converse is generally false. For

example, suppose Z = {0, 1, 2, 3} and D = {0, 1}. Suppose 1{D3 = 1} ≥ 1{Dz = 1} w.p.1 under Q for z ̸= 3

and 1{D0 = 0} ≥ 1{Dz = 0} w.p.1 under Q for z ̸= 0, but Q{D1 = 1, D2 = 0} and Q{D1 = 0, D2 = 1} are

both strictly positive. Then Assumption 2.2 holds with z∗(0) = 0 and z∗(1) = 3, but unordered monotonicity

fails. In particular, 1{D1 = 1} and 1{D2 = 1} are not ordered, thus violating (10). We thus conclude that

if Q is defined as the set of distributions that satisfy instrument exogeneity and unordered monotonicity,

then Q ⫋ Q∗
E,M .

Example 4.4. Suppose under Q, (Dz : z ∈ Z) is determined by

Dz = argmax
d∈D

(g(z, d) + Ud) , (11)

for g : Z ×D → ℜ where ℜ is the set of real numbers and a random vector (Ud : d ∈ D), whose distribution

is absolutely continuous with respect to the Lebesgue measure on ℜ|D| and Z ⊥⊥ ((Ud : d ∈ D), (Yd : d ∈ D)).

Hence, Q satisfies Assumption 2.1 by construction. Let Q denote the set of distributions that are consistent

with (Dz : z ∈ Z) being determined by (11) for some g and (Ud : d ∈ D) satisfying these requirements. The

model Q is called an additive random utility model (ARUM). A sufficient condition for Q ∈ Q to satisfy

Assumption 2.2 is that for each d ∈ D there exists z∗(d) ∈ Z such that

g(z∗(d), d)− g(z∗(d), d′) > g(z, d)− g(z, d′) for all d′ ̸= d and z ̸= z∗(d) . (12)

We refer to the requirement in (12) as uniform targeting of treatment d. The terminology is intended to

reflect that there is a value of the instrument that maximizes the gains (in terms of g) of choosing treatment

d versus any other treatment d′ uniformly across these other possible values of the treatment. In this sense,

10



that value of the instrument targets treatment d uniformly. We now argue by contradiction that (12) implies

(4); hence, if (12) holds for all d ∈ D, then Q satisfies Assumption 2.2. To this end, suppose that, with

positive probability, Dz∗(d) = d′ ̸= d but Dz′ = d for z′ ̸= z∗(d). Then,

g(z∗(d), d′) + Ud′ ≥ g(z∗(d), d) + Ud ,

g(z′, d) + Ud ≥ g(z′, d′) + Ud′ .

These two inequalities imply

g(z∗(d), d)− g(z∗(d), d′) ≤ g(z′, d)− g(z′, d′) ,

which violates (12). A particular example when |Z| ≥ |D| that satisfies (12) with z∗(d) = d after a suitable

relabelling is

g(z, d) = αd + βd1{z = d} , (13)

with βd > 0, so that Z = d strictly increases the latent value of treatment d while leaving the values of the

remaining options unchanged.

Remark 4.3. The ARUM for a binary treatment is equivalent to the Heckman-Vytlacil nonparametric

selection model for a binary treatment considered, e.g., in Heckman and Vytlacil (1999, 2005), and shown

by Vytlacil (2002) to be equivalent to the monotonicity and exogeneity assumptions of Imbens and Angrist

(1994). Heckman and Vytlacil (2001) show that the Heckman-Vytlacil nonparametric selection model for

a binary treatment results in an identified set for the ATE of the form in (7) and that the model has

no identifying power beyond instrument exogeneity for the ATE. Example C.1 in Appendix C shows that

an ARUM for a binary treatment will satisfy Assumption 2.2 and therefore the results of this paper nest

the results of Heckman and Vytlacil (2001). Example 4.4, on the other hand, extends their results to

nonparametric selection models for a multi-valued treatment. For a partial identification analysis of a class

of parameters that includes the ATE under a nonparametric selection model for a binary treatment and

sometimes imposing additional restrictions, see, e.g., Mogstad et al. (2018), Han and Yang (2024), and Marx

(2024).

Example 4.5. Lee and Salanié (2023) also consider the ARUM defined by (11) without imposing the

uniform targeting of (12) for each treatment. Instead, they impose an assumption that they refer to as

“strict one-to-one targeting”, in which the set of treatments can be partitioned into a set of treatments D†

that are “targeted” and a set of treatments D \ D† that are “not targeted” such that

1. For d ∈ D \ D†, g(z, d) is the same for all z ∈ Z;

2. For d ∈ D†, there exists z†(d) such that g(z†(d), d) > g(z′, d) for all z′ ̸= z†(d) and such that g(z′, d)

takes the same value for all z′ ̸= z†(d); additionally, z†(d) ̸= z†(d′) for d, d′ ∈ D†, d ̸= d′.

The terminology “one-to-one” stems from the second requirement above. They further impose that there

exists a treatment that is known to be non-targeted. This class of ARUMs is equivalent to imposing (13) for
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targeted treatments, imposing g(z, d) = αd for non-targeted treatments, and imposing that there is at least

one non-targeted treatment. In such a setting, Lee and Salanié (2023) analyze the identification of a particular

class of average effects within subgroups defined by potential treatments. We now use our analysis to consider

instead the identification of average potential outcomes and ATEs given their assumptions. Suppose strict

one-to-one targeting holds, and additionally suppose that there is at least one targeted treatment. In

Appendix B.1, we argue that Assumption 2.2 holds when |Z| > |D†|, so that there are more values of the

instrument than there are targeted treatments. We further argue that (12) does not hold for some treatments

unless |D| = |Z| = 2. Such models therefore provide another class of ARUMs, distinct from the one with

uniform targeting described in Example 4.4, for which Assumption 2.2 holds. In Example 5.3 below, we

show, however, that Assumption 2.2 does not hold when |D| ≥ 3, |Z| = |D†|, and the support of (Ud : d ∈ D)

is ℜ|D|.

5 Examples of Models That Do Not Satisfy Assumption 2.2

We now consider models that do not satisfy generalized monotonicity (Assumption 2.2). For each model, we

show that the identified sets for average potential outcomes are not given by (6). For the first two examples,

we further show that they do in fact provide identifying power beyond instrument exogeneity.

Example 5.1. Suppose Y = D = Z = {0, 1}. Let Q denote all distributions Q that satisfy Assumption 2.1

and

Q{D0 = D1} = 0 ,

which, in the language of Angrist et al. (1996), is imposing that all individuals are either compliers or defiers.

For any P such that Q0(P,Q) ̸= ∅, θ(Q) is identified relative to Q, i.e., Θ0(P,Q) is a singleton. To see this,

note that for any Q ∈ Q0(P,Q) and y ∈ Y,

Q{Y1 = y} = Q{Y1 = y,D0 = 0, D1 = 1}+Q{Y1 = y,D0 = 1, D1 = 0}

= Q{Y1 = y,D1 = 1}+Q{Y1 = y,D0 = 1}

= Q{Y1 = y,D1 = 1 | Z = 1}+Q{Y1 = y,D0 = 1 | Z = 0}

= P{Y = y,D = 1 | Z = 1}+ P{Y = y,D = 1 | Z = 0} ,

where the first two equalities follows from Q{D0 = D1} = 0, the third equality follows from Assumption

2.1, and the final equality follows from Q ∈ Q0(P,Q). A similar argument establishes identification of

Q{Y0 = y}. In contrast, we show in Appendix B.2 that there exists a P for which Q0(P,Q) ̸= ∅ and (6) is

not a singleton. The identified set for θ(Q) is therefore not given by (6). We further show in Appendix B.2

that Θ0(P,Q
∗
E) is not a singleton for the same P . Thus, the model Q does have identifying power beyond

instrument exogeneity for θ(Q).

Furthermore, recall as discussed in Remark 3.3 that if Q has identifying power for θ(Q), then it cannot

contain a submodel satisfying instrument exogeneity and generalized monotonicity that is consistent with

P . In this example, the model Q contains such a submodel if and only if P satisfies either (i) P{D = 0 |
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Z = 0} = P{D = 1 | Z = 1} = 1 (in which case all individuals are compliers) or (ii) P{D = 1 | Z = 0} =

P{D = 0 | Z = 1} = 1 (in which case all individuals are defiers). In order for Q to have identifying power

for θ(Q), it therefore must be the case that 0 < P{D = 0 | Z = 0}, P{D = 0 | Z = 1} < 1, which is indeed

satisfied by the counterexample in Appendix B.2. Further note that (6) is a singleton in this example if and

only if P satisfies either (i) or (ii).

Example 5.2. Consider an ordered choice model for treatment. Suppose that |Z| ≥ 3, and let Q denote

the set of all distributions that satisfy Assumption 2.1 and

Q{Dj ≥ Dk} = 1 for all j ≥ k . (14)

For example, D might represent quantity of some treatment, and Z might represent levels of subsidy for the

treatment. The restriction in (14) is equivalent to the monotonicity assumption considered in Angrist and

Imbens (1995). See Vytlacil (2006) for the connection between this restriction and ordered discrete-choice

selection models. Without loss of generality, let D = {0, . . . , D̄}. In this case, (4) is satisfied for d ∈ {0, D̄}
for all Q ∈ Q0(P,Q); to see this, take z∗(0) = min{Z} and z∗(D̄) = max{Z}. By a straightforward

modification of the arguments underlying Theorem 3.2, one can show that the identified sets for EQ[Y0]

and EQ[YD̄] are given by (6) for any P such that Q0(P,Q) ̸= ∅. The ordered monotonicity assumption in

(14) therefore has no identifying power beyond instrument exogeneity for EQ[Y0] and EQ[YD̄]. In contrast,

(4) need not hold for d ∈ D \ {0, D̄} and Q ∈ Q0(P,Q). In Appendix B.3, we show there exists a P for

which Q0(P,Q) ̸= ∅ and Θ0(P,Q) is not given by (6). We further show Θ0(P,Q) ⫋ Θ0(P,Q
∗
E) for the

same P . Thus, the ordered monotonicity assumption in (14) does have identifying power beyond instrument

exogeneity for EQ[Yd] for d ∈ D \ {0, D̄}.

Example 5.3. In Example 4.5, we considered ARUMs satisfying the strict one-to-one targeting assumption

of Lee and Salanié (2023). As discussed there, if |D| = 2 or if |D| ≥ 3 and |Z| > |D†|, then Assumption

2.2 holds and the results in Section 3 are applicable. Now consider the case in which |D| ≥ 3 and |Z| =
|D†|. Denote by Q the ARUM model defined by (11) under the additional assumption that the support of

(Ud : d ∈ D) is ℜ|D|. Then, as we show in Appendix B.4, while (4) will hold for targeted treatments, (4)

cannot hold for any non-targeted treatment, and thus Assumption 2.2 is violated. We show that, while the

identified set for EQ[Yd] is given by (6) for targeted treatments when Q0(P,Q) ̸= ∅, there exists a P for

which Q0(P,Q) ̸= ∅ and the identified set for EQ[Yd] is not given by (6) for non-targeted treatments.
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A Proofs of Main Results

A.1 Proof of Lemma 2.1

The necessity of (5) has been proved in the main text. On the other hand, fix a d ∈ D, suppose (5) holds

for some z ∈ Z. Fix a particular z∗ ∈ Z∗(d,Q) that satisfies (4). If z = z∗ then of course Assumption 2.2

holds for z. Suppose z ̸= z∗. Then,

0 ≤ P{D = d | Z = z} − P{D = d | Z = z∗}

= Q{Dz = d} −Q{Dz∗ = d}

= Q{Dz∗ ̸= d,Dz = d} −Q{Dz ̸= d,Dz∗ = d}

= −Q{Dz ̸= d,Dz∗ = d} ,

where the first inequality is using that z satisfies (5), the second line is using Assumption 2.1, and the last

line is using that z∗ satisfies (4). Thus Q{Dz ̸= d,Dz∗ = d} = 0. Assumption 2.2 implies

Q{Dz ̸= d,Dz′ = d for some z′ ∈ Z}

= Q{Dz ̸= d,Dz∗ = d}+Q{Dz ̸= d,Dz∗ ̸= d,Dz′ = d for some z′ ∈ Z \ {z∗}}

= 0 ,

and z satisfies Assumption 2.2 as well.

A.2 Proof of Theorem 3.1

The desired result follows immediately from Theorems 3.2 and 3.3.

A.3 Proof of Theorem 3.2

This section is organized as follows. In Section A.3.1, we introduce additional notation that is helpful in

formally proving our result, including defining subgroups of individuals, called treatment response types,

who are defined by what treatment they would take at each value of the instrument. Because all variables

are discrete, we will directly work with the probability mass function. We derive a lemma that characterizes

a sufficient condition for a given distribution of potential outcomes and treatments Q to rationalize the

distribution of the data P . The lemma states that whether a Q that satisfies Assumption 2.1 rationalizes P

depends on the probability of each treatment response type and on the probability of that type’s potential

outcomes corresponding to treatments they would choose for some value of the instrument (so that they

“comply with” this treatment at least for some values of the instrument), but does not depend on the

probability of that type’s potential outcomes corresponding to treatments they would not choose for any

value of the instrument (so that they are “never-takers” of this treatment). If Q satisfies Assumptions 2.1

and 2.2, then the set of treatments for which a treatment response type is a “never-taker” are precisely
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the set of treatments that they would not take even when maximally encouraged to do so. Therefore, the

implication of the lemma is that if Q satisfies Assumptions 2.1 and 2.2 and rationalizes P , then any other

Q∗ satisfying Assumption 2.1 and 2.2 will also rationalize P if Q and Q∗ differ only in the probability

of potential outcomes corresponding to treatments that a given response type would not take even when

maximally encouraged to do so.

In Section A.3.2, we use the notation and lemma introduced in Section A.3.1 to prove the theorem.

Let Q satisfy the assumptions of the theorem. We first show that Θ0(P,Q) is a subset of the bounds in

(6). We then show that the bounds in (6) are a subset of Θ0(P,Q) using the following proof strategy. By

assumption, Θ0(P,Q) is non-empty, so that there exists a distribution Q ∈ Q that rationalizes P . For each

value θ0 in the bounds of (6), we construct an alternative distribution Q∗ ∈ Q such that θ(Q∗) = θ0 with

Q and Q∗ differing only in the probability of outcomes corresponding to treatments that a given response

type would not take even when maximally encouraged to do so. That the constructed Q∗ lies in Q follows

from the assumption that Q satisfies Assumption 3.1 and that Q and Q∗ have the same distribution of

potential treatment choices with Q ∈ Q. That the constructed Q∗ rationalizes P follows from Q ∈ Q and

the previously described lemma. That we are able to construct such a Q∗ with θ(Q∗) = θ0 for every θ0 in

the bounds of (6) establishes that the bounds (6) are a subset of Θ0(P,Q), completing the proof.

A.3.1 Auxillary Results

To present the proof of Theorem 3.2, we first introduce some further notation. Because all variables are

discrete, we will directly work with the probability mass function. Recall from the discussion in Section 2

that if Q satisfies Assumption 2.1, then P = QT−1 if and only if

pyd|z = Q{Yd = y,Dz = d} .

Following Heckman and Pinto (2018), we define a treatment response type as a vector rt ∈ D|Z|,

rt = (dz : z ∈ Z) ∈ D|Z| .

Treatment response types are also called principal strata (Frangakis and Rubin, 2002). We analogously

define an outcome response type as a vector ro ∈ Y |D|,

ro = (yd : d ∈ D) ∈ Y |D| .

Because all variables are discrete, we define the probability mass function as

q
(
ro, rt

)
= Q{(Yd : d ∈ D) = ro, (Dz : z ∈ Z) = rt} .

For the rest of the proof, without loss of generality, we suppose D = {0, 1, . . . , |D|−1} and Z = {0, 1, . . . , |Z|−
1}. Let roj denote the (j+1)th entry of ro and rtj denote the (j+1)th entry of rt. In other words, roj denotes

the value of the potential outcome for the outcome response type ro when the treatment equals j, and rtj
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denotes the value of the potential treatment for the treatment response type rt when the instrument equals

j. In this notation, if Q satisfies Assumption 2.1, then it follows from (2) that P = QT−1 if and only if

pyd|z =
∑

(ro,rt):rod=y,rtz=d

q(ro, rt) ∀ y ∈ Y, d ∈ D, z ∈ Z . (15)

Below we derive a lemma that simplifies determining whether q(ro, rt) satisfies (15) and will be used

subsequently to derive our characterization of the identified set. To this end, we require some further

notation. Let

N (rt) = {d ∈ D : rtz ̸= d for all z ∈ Z} ,

N (rt)c = {d ∈ D : rtz = d for some z ∈ Z} ,

For a given treatment response type rt, N (rt) is the set of treatments for which that treatment response type

is a “never-taker,” and N (rt)c is the set of treatments for which that treatment response type will “comply

with” the treatment for some value of z. Using this notation, partition outcome and treatment response

types (ro, rt) as (ron(r
t), roc(r

t), rt) where

ron(r
t) = (rod : d ∈ N (rt)) ,

roc(r
t) = (rod : d ∈ N (rt)c) .

For a given treatment response type rt, ron(r
t) are those outcomes that are never observed for that response

type, and roc(r
t) are the remaining outcomes that are observed given some value of Z. Here, the subscripts

n and c stand for “never-taker” and “complier.”

Remark A.1. Here we illustrate how our notation specializes under Assumption 2.2. Note Assumption 2.2

can be expressed as restricting q(ro, rt) = 0 unless the treatment response type rt satisfies the condition

therein; in other words, it restricts the support of the treatment response type. In particular, if for some

d ∈ D, rtz∗(d) ̸= d while rtz′ = d for some z′ ̸= z∗(d), then q(ro, rt) = 0 for all ro. For any rt in the support,

N (rt) = {d ∈ D : rtz∗(d) ̸= d} ,

N (rt)c = {d ∈ D : rtz∗(d) = d} ,

and

ron(r
t) = (rod : d ∈ D, rtz∗(d) ̸= d) ,

roc(r
t) = (rod : d ∈ D, rtz∗(d) = d) .

Indeed, z∗(d) is the instrument that maximally encourages to treatment d, so if rtz∗(d) ̸= d, then rtz ̸= d for

all z ∈ Z. As a result, someone with that treatment response type rt never takes d, and hence d ∈ N (rt).

Otherwise, d ∈ N (rt)c, or this person is a “complier” for treatment d at least when z = z∗(d). The outcome
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response type ro is then partitioned into ron(r
t) and roc(r

t) according to whether d ∈ N (rt) or not.

For notational convenience, we further define the probability mass q(roc(r
t), rt) as q(ron(r

t), roc(r
t), rt)

summed over ron(r
t):

q(roc(r
t), rt) =

q(ro, rt) if N (rt) = ∅ so that roc(r
t) = ro∑

ron(r
t)∈Y|N(rt)| q(ron(r

t), roc(r
t), rt) if N (rt) ̸= ∅ so that roc(r

t) ̸= ro .

In defining the probability mass q(roc(r
t), rt), we sum over all possible values of ron(r

t), because these are the

outcomes of treatments that are never taken by the treatment response type rt, and hence will not be relevant

for the observed data. Using this notation, we have the following lemma that asserts whether q(ro, rt) satisfies

(15) depends only on q(roc(r
t), rt). This lemma implies that whether a distribution of potential outcomes

and treatments Q that satisfies Assumption 2.1 rationalizes the distribution of the data P depends only on

the probability of each treatment response type and the probability of that type’s potential outcomes that

would be observed for some value of the instrument.

Lemma A.1. Suppose q satisfies (15). Then, q∗ satisfies (15) if, for each rt ∈ D|Z|,

q∗(roc(r
t), rt) = q(roc(r

t), rt) ∀ roc(r
t) . (16)

Proof. We can rewrite (15) as

pyd|z =
∑

rt:rtz=d

∑
ro:rod=y

q(ro, rt)

=
∑

rt:rtz=d

∑
roc (r

t):rod=y

 ∑
ron(r

t)

q(ron(r
t), roc(rt), r

t)


=

∑
rt:rtz=d

∑
roc (r

t):rod=y

q(roc(rt), r
t) ,

where the second equality uses that roc(r
t) is nonempty because rtz = d and that rod is an element of roc(r

t)

for rt such that rtz = d. The result now follows.

A.3.2 Proof of the Theorem

Θ0(P,Q) ⊆ (6)

We first show that (6) provides valid bounds on θ(Q) under the stated assumptions, that is, Θ0(P,Q) is

a subset of the bounds of (6). Suppose Q ∈ Q0(P,Q). For each d ∈ D,

EQ[Yd] = EQ[Yd1{Dz∗(d) = d}] + EQ[Yd1{Dz∗(d) ̸= d}]

= βd|z∗(d) + EQ[Yd1{Dz∗(d) ̸= d}] ,
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where the second equality is using Assumption 2.1. We have

E[Yd1{Dz∗(d) ̸= d}] ∈ [yLQ{Dz∗(d) ̸= d}, yUQ{Dz∗(d) ̸= d}] ,

while Assumption 2.1 implies that

Q{Dz∗(d) ̸= d} = 1−
∑
y∈Y

pyd|z∗(d) .

We thus have that

E[Yd] ∈ [βd|z∗(d) + yL(1−
∑
y∈Y

pyd|z∗(d)), βd|z∗(d) + yU (1−
∑
y∈Y

pyd|z∗(d))] ,

for each d ∈ D, and thus (6) provides valid bounds on θ(Q) under the stated assumptions.

(6) ⊆ Θ0(P,Q)

We now show that the bounds of (6) are the identified set for θ(Q), that is, the bounds of (6) are a subset

of Θ0(P,Q). Let q denote latent probabilities corresponding to a fixed Q ∈ Q0(P,Q). There exists such a

q by the assumption that Q0(P,Q) is non-empty. We show that for each θ0 in the right-hand side of (6),

we can construct an alternative distribution of potential outcomes and treatments Q∗ that is contained in

Q0(P,Q) and for which θ(Q∗) = (EQ∗ [Yj ] : j ∈ D) is equal to θ0. In particular, for each θ0 in the right-hand

side of (6) we will construct q∗ corresponding to Q∗ that

(a) satisfies
∑

ro q
∗(ro, rt) =

∑
ro q(r

o, rt) and hence Q∗ ∈ Q because the distribution of (Dz : z ∈ Z) is

unchanged and by assumption that Q satisfies Assumption 3.1,

(b) satisfies (16) and hence P = Q∗T−1 due to Lemma A.1, and

(c) satisfies θ(Q∗) = θ0.

Properties (a) and (b) allow us to conclude that Q∗ ∈ Q0(P,Q), that is, the constructed distribution is

consistent with P and the model Q. These properties will follow from our iterative construction of q∗,

which preserves the marginal distribution of potential treatments but modifies the marginal distributions

of potential outcomes for outcomes that are never observed for a given treatment response type, that is,

correspond to a never-taken treatment for a given treatment response type. Because the marginal distribution

of potential treatments is preserved, property (a) follows. Because only the marginal distributions of potential

outcomes for never-taken treatments are modified, property (b) follows. Property (c) follows from being able

to flexibly modify the marginal distributions of potential outcomes for never-taken treatments, so that any

θ can be achieved.

Part 1: construct Q∗

We now construct an alternative q∗ as follows. Fix some vector of weights α = (α0, α1, ..., α|D|−1)
′ ∈

[0, 1]|D| to be specified below. For each treatment response type rt, let q∗0(r
o, rt) = q(ro, rt) for all ro.
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Let K(rt) = |N (rt)| be the number of treatments for which treatment response type rt is a never-taker.

Note that if K(rt) = 0, then N (rt) = ∅, so rtz∗(d) = d for all d ∈ D under rt. For such an rt, we set

q∗(ro, rt) = q∗0(r
o, rt) = q(ro, rt) for all ro ∈ Y |D|.

If K(rt) ≥ 1, enumerate the set of never-taken treatments N (rt) as {j[1], ..., j[K(rt)]}, and for k = 1 to

K(rt), define q∗k iteratively as follows:

q∗k((r
o
−j[k], r

o
j[k] = yL), rt) = (1− αj[k])

∑
ro
j[k]

∈Y
q∗k−1((r

o
−j[k], r

o
j[k]), r

t)

q∗k((r
o
−j[k], r

o
j[k] = y), rt) = 0 for y ̸∈ {yL, yU}

q∗k((r
o
−j[k], r

o
j[k] = yU ), rt) = αj[k]

∑
ro
j[k]

∈Y
q∗k−1((r

o
−j[k], r

o
j[k]), r

t) ,

(17)

for all ro−j[k], where we partition ro = (ro−j[k], r
o
j[k]). Intuitively, in step k, for each ro−j[k] and rt we reassign

the probabilities of all outcome responses to never-taken treatment j[k] to outcome responses yL and yU ,

splitting between yL and yU according to weight αj[k].

With this construction, the marginal distribution of Yj[k] for treatment response type rt is only modified

in step k. This statement implies that for each fixed k, for step ℓ ≤ k − 1, and for any outcome y ∈ Y,

∑
ro−j[k]

q∗ℓ ((r
o
−j[k], r

o
j[k] = y), rt) =

∑
ro−j[k]

q∗0((r
o
−j[k], r

o
j[k] = y), rt) =

∑
ro−j[k]

q((ro−j[k], r
o
j[k] = y), rt) . (18)

On the other hand, for each fixed k, because the marginal distribution of Yj[k] for treatment response type

rt is not further modified after step k, (17) and (18) imply

∑
ro−j[k]

q∗K(rt)((r
o
−j[k], r

o
j[k] = yL), rt) =

∑
ro−j[k]

q∗k((r
o
−j[k], r

o
j[k] = yL), rt)

= (1− αj[k])
∑

ro
j[k]

∈Y

∑
ro−j[k]

q((ro−j[k], r
o
j[k]), r

t)

= (1− αj[k])
∑
ro

q(ro, rt) ,∑
ro−j[k]

q∗K(rt)((r
o
−j[k], r

o
j[k] = y), rt) = 0 for y ̸∈ {yL, yU} ,

∑
ro−j[k]

q∗K(rt)((r
o
−j[k], r

o
j[k] = yU ), rt) =

∑
ro−j[k]

q∗k((r
o
−j[k], r

o
j[k] = yU ), rt)

= αj[k]

∑
ro
j[k]

∈Y

∑
ro−j[k]

q((ro−j[k], r
o
j[k]), r

t)

= αj[k]

∑
ro

q(ro, rt) . (19)

These equations state that under q∗K(rt), the constructed distribution in the final step K(rt), the probability

that roj[k] = y for each rt is zero if y is not yL or yU , is αj[k] times the true probability of rt under q if

y = yU , and is 1− αj[k] times the true probability of rt under q if y = yL.
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Finally, set

q∗(ro, rt) = q∗K(rt)(r
o, rt) ∀ ro .

Part 2: verify property (a), Q∗ ∈ Q

With this construction, q∗(ro, rt) is non-negative and from (19) we have

∑
ro

q∗(ro, rt) =
∑
ro

q(ro, rt) for all rt .

Because we assume Q satisfies Assumption 3.1 and Q ∈ Q, this implies that Q∗ ∈ Q.

Part 3: verify property (b), P = Q∗T−1

Furthermore, for each rt and for all roc(r
t), the construction of q∗ in (17) implies

q∗(roc(r
t), rt) =

∑
ron(r

t)∈Y|N(rt)|

q∗(ron(r
t), roc(r

t), rt)

=
∑

ro
j[1]

∈Y
· · ·

∑
ro
j[K(rt)]

∈Y
q∗K(rt)((r

o
j[1], . . . , r

o
j[K(rt)]), r

o
c(r

t), rt)

=
∑

ro
j[1]

∈Y
· · ·

∑
ro
j[K(rt)]

∈{yL,yU}

q∗K(rt)(r
o
−j[K(rt)], r

o
j[K(rt)], r

t)

=
∑

ro
j[1]

∈Y
· · ·

∑
ro
j[K(rt)]

∈Y
q∗K(rt)−1(r

o
−j[K(rt)], r

o
j[K(rt)], r

t)

=
∑

ro
j[1]

∈Y
· · ·

∑
ro
j[K(rt)]

∈Y
q∗0((r

o
j[1], . . . , r

o
j[K(rt)]), r

o
c(r

t), rt)

=
∑

ron(r
t)∈Y|N(rt)|

q(ron(r
t), roc(r

t), rt)

= q(roc(r
t), rt) .

Therefore for each rt, q∗(roc(r
t), rt) = q(roc(r

t), rt) ∀ roc(r
t), and hence by Lemma A.1, q∗ satisfies (15) so

that P = Q∗T−1. Thus Q∗ ∈ Q0(P,Q).

Part 4: verify property (c), θ(Q∗) = θ0

Note for each d ∈ D,

EQ∗ [Yd1{Dz∗(d) = d}] = EP [Y 1{D = d} | Z = z∗(d)] = βd|z∗(d) .

Further note since Assumption 2.2 holds for Q, we have that for each d ∈ D and for each rt if rtz∗(d) = d

then rod is a component of roc(r
t) and d ∈ N (rt)c, while if rtz∗(d) ̸= d then rod is a component of ron(r

t) and

d ∈ N (rt). Then we also have that for each d ∈ D,

EQ∗ [Yd1{Dz∗(d) ̸= d}] =
∑
y∈Y

∑
rt:rt

z∗(d)
̸=d

∑
ro:rod=y

y q∗(ro, rt)
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=
∑
y∈Y

∑
rt:rt

z∗(d)
̸=d

∑
ro−d

y q∗((ro−d, r
o
d = y), rt)

= (αdy
U + (1− αd)y

L)
∑

rt:rt
z∗(d)

̸=d

∑
ro

q(ro, rt)

= (αdy
U + (1− αd)y

L) Q{Dz∗(d) ̸= d}

= (αdy
U + (1− αd)y

L)(1−
∑
y

pyd|z∗(d)) ,

where the third equality is using that (19) holds for rt such that rtz∗(d) ̸= d, so that d = j[k′] for some k′ in

constructing q∗(·, rt) for that rt, and the last equality is using that Q satisfies (15). Thus, for each d ∈ D,

EQ∗ [Yd] = EQ∗ [Yd1{Dz∗(d) = d}] + EQ∗ [Yd1{Dz∗(d) ̸= d}]

= βd|z∗(d) + (αdy
U + (1− αd)y

L)(1−
∑
y

pyd|z∗(d)) .

For any θ0 contained in (6), we can thus choose α = (α0, α1, ..., α|D|−1)
′ ∈ [0, 1]|D| such that θ(Q∗) = θ0.

A.4 Proof of Corollary 3.1

The results follows immediately from Theorem 3.2 because E[Yj ]− E[Yk] is a function of θ(Q).

A.5 Proof of Lemma 3.1

To see it, note for any d ∈ D and z ∈ Z,

EQ[Yd] = EQ[Yd | Z = z] = EQ[Yd1{D = d} | Z = z] + EQ[Yd1{D ̸= d} | Z = z]

= EQ[Y 1{D = d} | Z = z] + EQ[Yd1{D ̸= d} | Z = z]

= βd|z + EQ[Yd1{D ̸= d} | Z = z]

≤ βd|z + yUP{D ̸= d | Z = z}

= βd|z + yU (1−
∑
y∈Y

pyd|z) .

Because the inequality holds for all z ∈ Z, the upper end for each d ∈ D of (9) is a valid upper bound for

E[Yd]. On the other hand, they can be simultaneously attained for all d ∈ D by setting Yd = yU whenever

D ̸= d and Z = z, without affecting the distribution of (Y,D,Z). A similar argument can be applied to the

lower ends. In addition, any values in between can also be attained simultaneously for all d ∈ D by setting

Yd to be a convex combination of yL and yU whenever D ̸= d and Z = z without affecting the distribution

of (Y,D,Z), and therefore (9) is indeed the identified set for θ(Q) under mean independence.
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A.6 Proof of Lemma 3.2

Suppose Q ∈ Q0(P,Q) ̸= ∅. Consider the upper endpoints of (6) and (9). For any d ∈ D, z ∈ Z,

EP [Y 1{D = d}] | Z = z∗(d)] + yUEP [1− 1{D = d} | Z = z∗(d)]

− EP [Y 1{D = d} | Z = z]− yUEP [1− 1{D = d} | Z = z]

= EQ[Yd1{Dz∗(d) = d}] + yUEQ[1− 1{Dz∗(d) = d}]

− EQ[Yd1{Dz = d}]− yUEQ[1− 1{Dz = d}]

= EQ[(Yd − yU )(1{Dz∗(d) = d} − 1{Dz = d})]

= EQ[(Yd − yU )(1{Dz∗(d) = d,Dz ̸= d} − 1{Dz∗(d) ̸= d,Dz = d})]

= EQ[(Yd − yU )1{Dz∗(d) = d,Dz ̸= d}]

≤ 0 ,

where the first equality uses Assumption 2.1 and the fourth equality uses that Q{Dz∗(d) ̸= d,Dz = d} = 0 for

all Q satisfying Assumption 2.2. Since this inequality holds for all z ∈ Z, we have that the upper endpoint

of the interval in (6) is weakly smaller than the upper endpoint of the interval in (9). Conversely, the upper

endpoint of (6) is contained in the set over which the upper endpoint of (9) is minimizing over, and thus

the upper endpoint of (6) is weakly larger than the upper endpoint of (9). We conclude that the upper

endpoints are the same. Parallel arguments show the equivalence of the lower endpoints.

A.7 Proof of Theorem 3.3

Because by assumption Q ⊆ Q′ ⊆ Q∗
MI , we have

Θ0(P,Q) ⊆ Θ0(P,Q
′) ⊆ Θ0(P,Q

∗
MI ) .

By Lemma 3.2, if Q ⊆ Q∗
E,M , Q satisfies Assumption 3.1, and Q0(P,Q) ̸= ∅, then we have

Θ0(P,Q) = Θ0(P,Q
∗
MI ) .

The result now follows by a sandwich argument.

A.8 Proof of Corollary 3.2

The result follows by taking Q = Q∗
E,M and Q′ = Q∗

E , noting that Q∗
E ⊆ Q∗

MI because Assumption 2.1

implies Assumption 3.2.
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A.9 Proof of Corollary 3.3

To begin, note by assumption Q0(P,Q
∗
WE ,M ) ̸= ∅, so there exists Q ∈ Q∗

WE ,M such that P = QT−1. We

then have Q{Z = z} = P{Z = z} for all z ∈ Z, and because Q satisfies Assumption 3.3, we know (2) holds.

Let Q1 denote the marginal distribution of ((Yd : d ∈ D), (Dz : z ∈ Z)) under Q, and QZ denote the marginal

distribution of Z under Q, and define Q̃ = Q1×QZ . Then, Q̃ satisfies Assumption 2.1 by construction, and it

satisfies Assumption 2.2 because the marginal distribution of (Dz : z ∈ Z) under Q̃ is the same as that under

Q. In summary, Q̃ ∈ Q∗
E,M . Furthermore, P = Q̃T−1 because (1) Q̃{Z = z} = Q{Z = z} = P{Z = z} for

all z ∈ Z; and (2) Q̃{Yd = y,Dz = d} = Q{Yd = y,Dz = d} for all d ∈ D and z ∈ Z, and hence (2) is still

satisfied. As a result, we know Q0(P,Q
∗
E,M ) ̸= ∅.

Next, take Q = Q∗
E,M and Q′ = Q∗

WE ,M , and note that Q∗
E,M ⊆ Q∗

WE ,M ⊆ Q∗
MI because Assumption

2.1 implies Assumption 3.3, which in turn implies Assumption 3.2. Because we know Q0(P,Q
∗
E,M ) ̸= ∅ from

the previous paragraph, we then obtain from Theorem 3.3 that

Θ0(P,Q
∗
E,M ) = Θ0(P,Q

∗
WE ,M ) = Θ0(P,Q

∗
MI ) .

Similarly, taking Q′ = Q∗
WE , we have

Θ0(P,Q
∗
E,M ) = Θ0(P,Q

∗
WE ) = Θ0(P,Q

∗
MI ) .

The desired conclusion now follows.

B Details of Examples

B.1 Details of Example 4.5

We show that, except in the special case where the treatment and the instrument are both binary, the strict

one-to-one targeting assumption of Lee and Salanié (2023) with one or more targeted treatments implies that

(12) does not hold for some treatments. To see this, suppose that the strict one-to-one targeting assumption

of Lee and Salanié (2023) holds with |D†| ≥ 1. For each d ∈ D†, their assumptions include that there exists

some z†(d) and some U(d), U(d) with U(d) > U(d) such that

g(z, d) =

U(d) if z = z†(d)

U(d) if z ̸= z†(d) .
(20)

On the other hand, for each d ∈ D \ D†, they impose that g(z, d) = U(d) for all z ∈ Z, and they impose

that there is at least one such non-targeted treatment. For any d ∈ D \ D†, (12) requires that there exists

z∗(d) ∈ Z such that

g(z, d′) > g(z∗(d), d′) for all d′ ̸= d and z ̸= z∗(d) . (21)
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Suppose |Z| ≥ 3, and fix some targeted treatment d′ ∈ D†. Suppose z∗(d) ̸= z†(d′). Then, for z ∈
Z \ {z∗(d), z†(d′)}, (21) requires U(d′) > U(d′), a contradiction. Now suppose z∗(d) = z†(d′). Then, for

z ∈ Z \ {z∗(d)}, (21) requires U(d′) > U(d′), a contradiction. Thus, |Z| ≥ 3 implies that (12) does not hold

for non-targeted treatments.

Now suppose |Z| = 2, which we label as Z = {0, 1}, and suppose |D| ≥ 3. Without loss of generality

suppose 1 ∈ D† and z†(1) = 1. If z∗(d) = 1, then (21) requires U(1) > U(1), a contradiction. Now suppose

z∗(d) = 0. Then (21) requires g(1, d′) > g(0, d′) for all d′ ̸= d. Consider the following two cases:

• If |D†| = 1, then g(1, d′) > g(0, d′) holding for any d′ ∈ (D \ D†) \ {d} requires U(d′) > U(d′), a

contradiction.

• If |D†| > 1, then there exists d′′ ∈ D† \ {1}. By assumption z†(d′′) ̸= z†(1) so that z†(d′′) = 0. Then

g(1, d′) > g(0, d′) holding for d′ = d′′ requires U(d′′) > U(d′′), again a contradiction.

Thus, |Z| = 2 with |D| ≥ 3 implies that (12) does not hold for some treatments.

We have shown (12) does not hold for some treatments when either Z or D takes at least three values.

Now suppose |D| = |Z| = 2. Let D = 0 denote the nontargeted treatment and D = 1 the targeted treatment,

and let z†(1) = 1. Consider z∗(0) = 0 and z∗(1) = 1. Then evaluating (12) at either d = 0 or d = 1 results

in U(1) > U(1), and thus (12) holds when |D| = |Z| = 2. We conclude that the strict one-to-one targeting

of Lee and Salanié (2023) implies that (12) does not hold for some d ∈ D except in the special case where

|D| = |Z| = 2.

We now show that the strict one-to-one targeting of Lee and Salanié (2023) implies that Assumption 2.2

holds when |Z| > |D†|. Let Z† ⊆ Z denote the set of instruments that target some treatment,

Z† = {z ∈ Z : z = z†(d) for some d ∈ D†} .

Their strict one-to-one targeting assumption combined with |Z| > |D†| implies that there are values of the

instrument that do not target any treatment; in other words, Z† ⫋ Z. Following Lee and Salanié (2023), we

label the treatment that is known not to be targeted as treatment 0, so that g(z, 0) = U(0) for all z ∈ Z,

and impose their normalization that U(0) = 0. Consider (4) for d = 0. Note that

Q{Dz∗(0) ̸= 0, Dz′ = 0 for some z′ ̸= z∗(0)} = Q

 ⋃
d∗ ̸=0,z′ ̸=z∗(0)

Dz∗(0) = d∗, Dz′ = 0

 .

We wish to investigate whether there exists some z∗(0) ∈ Z such that the above probability is zero. Consider

z∗(0) equal to any value in Z \Z†, i.e., any value of the instrument that does not target any treatment. For

any fixed d∗ ̸= 0, z′ ̸= z∗(0), consider the event {Dz∗(0) = d∗, Dz′ = 0}. Since z∗(0) does not target any

treatment and thus does not target d∗, Dz∗(0) = d∗ implies

U0 − Ud∗ ≤ U(d∗) . (22)
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If z′ targets d∗, then Dz′ = 0 implies

U0 − Ud∗ ≥ U(d∗) . (23)

If z′ does not target d∗, then Dz′ = 0 implies

U0 − Ud∗ ≥ U(d∗) . (24)

Thus, the event {Dz∗(0) = d∗, Dz′ = 0} either requires (22) and (23) to jointly hold, which is a contradiction

since U(d∗) > U(d∗) , or requires (22) and (24) to jointly hold, which is a zero probability event given our

assumption that the distribution of (Ud : d ∈ D) is absolutely continuous w.r.t. Lebesgue measure. Thus

Q{Dz∗(0) ̸= 0, Dz′ = 0 for some z′ ̸= z∗(0)} is a probability of a finite union of zero probability events,

and thus, by Boole’s inequality, equals zero so that (4) holds for d = 0. A parallel argument shows that (4)

holds for any non-targeted treatment, and related argument shows that (4) holds for any targeted treatment.

Thus, under the strict one-to-one targeting of Lee and Salanié (2023), when there are more values of the

instrument than targeted treatments, Assumption 2.2 holds even though (12) is violated for some d ∈ D.

B.2 Details of Example 5.1

Let Q denote all distributions Q for which Assumption 2.1 holds and such that Q{D0 = D1} = 0. Then for

Q ∈ Q0(P,Q),

py1|1 = Q{Y1 = y,D1 = 1, D0 = 0}

py0|0 = Q{Y0 = y,D1 = 1, D0 = 0}

py0|1 = Q{Y0 = y,D1 = 0, D0 = 1}

py1|0 = Q{Y1 = y,D1 = 0, D0 = 1}

and

Q{Y0 = 1} = Q{Y0 = 1, D1 = 1, D0 = 0}+Q{Y0 = 1, D1 = 0, D0 = 1}

= p10|0 + p10|1

Q{Y1 = 1} = Q{Y1 = 1, D1 = 1, D0 = 0}+Q{Y1 = 1, D1 = 0, D0 = 1}

= p11|1 + p11|0 .

Therefore, if Q is consistent with P , then θ(Q) is identified as

Θ0(P,Q) =

{(
p10|0 + p10|1

p11|0 + p11|1

)}
. (25)

In contrast, the identified set that follows from imposing Assumption 2.1 alone, Θ0(P,Q
∗
E), is shown by
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Balke and Pearl (1997) to be

max


p10|1

p10|0

p10|0 + p11|0 − p00|1 − p11|1

p01|0 + p10|0 − p00|1 − p01|1

 ≤ Q{Y0 = 1} ≤ min


1− p00|1

1− p00|0

p01|0 + p10|0 + p10|1 + p11|1

p10|0 + p11|0 + p01|1 + p10|1

 (26)

and

max


p11|0

p11|1

−p00|0 − p01|0 + p00|1 + p11|1

−p01|0 − p10|0 + p10|1 + p11|1

 ≤ Q{Y1 = 1} ≤ min


1− p01|1

1− p01|0

p00|0 + p11|0 + p10|1 + p11|1

p10|0 + p11|0 + p00|1 + p11|1

 . (27)

It follows from Q ⊆ Q∗
E that Θ0(P,Q) ⊆ Θ0(P,Q

∗
E), and thus (25) is contained in (26)–(27).

Next, we show that there exists a P for which Q0(P,Q) ̸= ∅, Θ0(P,Q) is not given by (6) and Θ0(P,Q) ⫋
Θ0(P,Q

∗
E). We do so by providing a numerical example. Consider the P specified in Table 1 and the Q

specified in Table 2, where we write q(y0y1, d0d1) = Q{Yd = yd, Dz = dz, (d, z) ∈ D × Z} and omit any

q(·) = 0. One can check that Q ∈ Q and rationalizes P , so that Q ∈ Q0(P,Q) ̸= ∅. In this example,

Q{Y0 = 1} = 0.4274, and thus the identified set for Q{Y0 = 1} relative to Q is the singleton {0.4274}. In

contrast, evaluating (26) at P gives the identified set for Q{Y0 = 1} relative to Q∗
E as [0.3336, 0.5212]. We

thus conclude that Θ0(P,Q) ⫋ Θ0(P,Q
∗
E) for some P that can be rationalized by Q ∈ Q. Now consider

evaluating the bounds of (6) at the same P . Doing so results in bounds onQ{Y0 = 1} given by [0.1618, 0.5445]

if setting z∗(0) = 0 and given by [0.2656, 0.8829] if setting z∗(0) = 1. Therefore, no matter z∗(0) = 0 or 1,

the bounds (6) is not the identified set for Q{Y0 = 1} relative to either Q∗
E or Q.

p00|0 p10|0 p01|0 p11|0
0.4555 0.1618 0.3077 0.0750

p00|1 p10|1 p01|1 p11|1
0.1171 0.2656 0.0188 0.5985

Table 1: Distribution P in Appendix B.2.

q(00, 01) q(00, 10) q(01, 01) q(01, 10)
0.0039 0.0428 0.4516 0.0743

q(10, 01) q(10, 10) q(11, 01) q(11, 10)
0.0149 0.2649 0.1469 0.0007

Table 2: Distribution Q.

B.3 Details of Example 5.2

Suppose Y = {0, 1}, D = {0, 1, 2}, and Z = {0, 1, 2}. Then, the linear program approach in Balke and Pearl

(1993, 1997) leads to the following identified set for EQ[Y1] = Q{Y1 = 1} relative to Q being defined as in
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Example 5.2: max


p11|0

p11|1

p11|2

p11|0 − p11|1 + p11|2

 , min


1− p01|2

1− p01|1

1− p01|0

1− p01|0 + p01|1 − p01|2



 . (28)

We will show that for some P such that Q0(P,Q) ̸= ∅, we have Θ0(P,Q) strictly smaller than (6) and

Θ0(P,Q
∗
1). For this purpose we are only concerned with the validity of (28) instead of its sharpness. For

the lower bounds, first note for z ∈ Z,

Q{Y1 = 1} = Q{Y1 = 1 | Z = z} ≥ Q{Y1 = 1, D = 1 | Z = z} = Q{Y = 1, D = 1 | Z = z} ,

and therefore the first three rows follow. To show the last row, note it’s equivalent to

Q{Y1 = 1, D1 = 1}+Q{Y1 = 1, D0 = 0}+Q{Y1 = 1, D0 = 2} ≥ Q{Y1 = 1, D2 = 1} .

It therefore suffices to show that

{D2 = 1} =⇒ {D1 = 1} ∪ {D0 = 0} ∪ {D0 = 2} . (29)

Suppose D2 = 1 but D0 ̸= 0 and D0 ̸= 2. Then D0 = 1. But D0 ≤ D1 ≤ D2, so D1 = 1. (29) now follows.

The lower bounds in (28) have all been shown to hold, and the upper bounds can be proved similarly.

Next, we show that there exists a P for which Q0(P,Q) ̸= ∅, Θ0(P,Q) is not given by (6) and Θ0(P,Q) ⫋
Θ0(P,Q

∗
E). We do so by providing a numerical example. Consider the P specified in Table 3 and the four Q

distributions specified in Table 4, 5, 6 and 7, which we denote as Qex,min, Qex,max, Qex,om,min and Qex,om,max

respectively, where we write q(y0y1y2, d0d1d2) = Q{Yd = yd, Dz = dz, (d, z) ∈ D×Z} and omit any q(·) = 0.

One can check that all the four Qs are in Q0(P,Q
∗
E), i.e., they all rationalize P and satisfy Assumption

2.1. Moreover, Qex,om,min ∈ Q0(P,Q) and Qex,om,max ∈ Q0(P,Q) so that Q0(P,Q) ̸= ∅. Evaluating

(28) at P gives [0.2117, 0.8205] =: Iex,om. In contrast, if one evaluates (6) by setting z∗(1) = 0, 1, 2 at

the same P , the resulting bounds for EQ[Y1] are [0.1664, 0.9255] =: I(6),0, [0.0712, 0.9311] =: I(6),1 and

[0.1165, 0.8261] =: I(6),2 respectively. In all cases, we see Iex,om ⫋ I(6),z∗(1) for all z∗(1) ∈ {0, 1, 2} so

Θ0(P,Q) is not given by (6). Furthermore, Qex,min /∈ Q0(P,Q) and Qex,max /∈ Q0(P,Q) because, for

example, qex,min(000, 021) > 0 and qex,max(000, 210) > 0. At the same time, EQex,min
[Y1] = 0.1664 /∈ Iex,om

and EQex,max
[Y1] = 0.8261 /∈ Iex,om. Therefore, Θ0(P,Q) ⫋ Θ0(P,Q

∗
E).

p00|0 p10|0 p01|0 p11|0 p02|0 p12|0
0.3808 0.2427 0.0745 0.1664 0.0345 0.1011

p00|1 p10|1 p01|1 p11|1 p02|1 p12|1
0.2830 0.1947 0.0689 0.0712 0.2014 0.1808

p00|2 p10|2 p01|2 p11|2 p02|2 p12|2
0.0802 0.0976 0.1739 0.1165 0.2444 0.2874

Table 3: Distribution P in Appendix B.3.
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q(000, 002) q(000, 011) q(000, 021) q(001, 002) q(001, 020) q(001, 021) q(001, 121) q(001, 211)
0.0139 0.0304 0.0054 0.2238 0.0802 0.0271 0.0735 0.0375

q(010, 101) q(010, 111) q(010, 122) q(100, 000) q(100, 022) q(100, 110) q(100, 202) q(101, 202)
0.0453 0.0712 0.0499 0.0966 0.1461 0.0010 0.0345 0.0636

Table 4: Distribution Qex,min.

q(001, 021) q(001, 121) q(001, 211) q(010, 000) q(010, 001) q(010, 002) q(010, 010) q(010, 122)
0.0305 0.0745 0.0689 0.0220 0.0064 0.0085 0.0260 0.1664

q(010, 202) q(011, 002) q(011, 022) q(011, 210) q(110, 000) q(110, 001) q(110, 011) q(110, 022)
0.0345 0.2116 0.0758 0.0322 0.0976 0.0971 0.0130 0.0350

Table 5: Distribution Qex,max.

q(000, 000) q(000, 001) q(000, 002) q(000, 022) q(000, 111) q(000, 122) q(000, 222) q(001, 002)
0.0802 0.0079 0.0430 0.0181 0.0209 0.0536 0.0345 0.1066

q(001, 022) q(001, 222) q(010, 001) q(010, 111) q(010, 122) q(100, 000) q(100, 001) q(100, 011)
0.0797 0.1011 0.0453 0.0712 0.0952 0.0976 0.0971 0.0480

Table 6: Distribution Qex,om,min.

q(000, 001) q(000, 111) q(000, 122) q(010, 000) q(010, 001) q(010, 012) q(010, 111) q(010, 122)
0.0079 0.0689 0.0056 0.0802 0.1114 0.0430 0.0051 0.1613

q(010, 222) q(011, 002) q(011, 022) q(011, 222) q(100, 001) q(110, 000) q(111, 012) q(111, 022)
0.0345 0.0835 0.0548 0.1011 0.0971 0.0976 0.0231 0.0249

Table 7: Distribution Qex,om,max.

B.4 Details of Example 5.3

Consider the ARUM defined by (11) with strict one-to-one targeting and |D| = 3, |Z| = |D†| = 2. In this

case, there are two targeted treatments and one non-targeted treatment. Following Lee and Salanié (2023),

label that non-targeted treatment as treatment 0 and impose the normalization that g(z, 0) = 0 for all z ∈ Z.

Label Z = 0 as the instrument value that targets treatment 1 and label Z = 1 as the instrument value that

targets treatment 2, so that (20) holds for d = 1, 2 for some U(d), U(d) with U(d) > U(d) and with z†(1) = 0,

z†(2) = 1. Let Q denote the set of all distributions for which (Dz : z ∈ Z) is determined by (11) with these

restrictions and additionally imposing that the support of (U0, U1, U2) is ℜ3. Recall (U0, U1, U2) ⊥⊥ Z by

assumption.

Let U10 = U1 − U0 and U20 = U2 − U0. In this model, the treatment value is completely determined by

the vector of realizations (U10, U20). For instance, Dz = 2 if and only if

U20 ≥ −g(z, 2)

U20 − U10 ≥ g(z, 1)− g(z, 2) ,

and a similar characterization holds for Dz = 1. See Figure 1, which is taken from Figure 1 in Lee and

Salanié (2023).

We first show that (4) holds for the targeted treatments by verifying that (12) holds for the targeted
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(−g(z, 1),−g(z, 2)) u10

u20

Dz = 1

Dz = 2

Dz = 0

Figure 1: Treatment under each value of (u10, u20) for a given z.

treatments. Consider (12) for d = 1. It holds with z∗(1) = z†(1) = 0 because

U(1) > U(1) ,

U(1)− U(2) > U(1)− U(2) ,

which in turn holds because U(d) > U(d) for d ∈ {1, 2}. Thus (12) holds for d = 1, which, as shown in

Example 4.4, implies that (4) holds for d = 1. By a parallel argument, (4) holds for d = 2.

We now show that there does not exist a value of z∗(0) such that (4) holds for the non-targeted treatment,

treatment 0. Suppose z∗(0) = 0. Then

Q{D0 ̸= 0, D1 = 0} ≥ Q{D0 = 1, D1 = 0}

= Q{−U(1) ≥ U10 ≥ −U(1), U20 ≤ −U(2), U10 − U20 ≥ U(2)− U(1)}

> 0 ,

where the last line is using that the support of the distribution of (U10, U20) = ℜ2 by assumption and that

strict targeting of treatment 1 requires −U(1) > −U(1). Thus (4) cannot hold for d = 0 with z∗(0) = 0. A

parallel argument shows that (4) cannot hold for d = 0 with z∗(0) = 1.

We conclude that, when |D| = 3 and |D†| = |Z| = 2, one-to-one strict targeting with the regularity

condition that the support of (U0, U1, U2) is ℜ3 implies that (4) holds for the targeted treatments but not for

the non-targeted treatments, and thus Assumption 2.2 cannot hold. This argument can be adapted for any

ARUM with |D| ≥ 3 and |Z| = |D†| to show that, while (4) holds for the targeted treatments, there does

not exist a value of z∗(d) such that (4) holds for any non-targeted treatment d, and thus that Assumption

2.2 cannot hold.
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z = 0

z = 1

(1, 1)

(2, 2)

(0, 0)

(1, 2)

(0, 2)

(1, 0)

Figure 2: Values of (D0, D1) for each value of (u10, u20).

Next, consider the identified sets for the average potential outcomes. Since (4) is satisfied for the targeted

treatments, a straightforward modification of the arguments underlying Theorem 3.2 show that the identified

sets for EQ[Yd] for d ∈ {1, 2} is given by (6) for any P such that Q0(P,Q) ̸= ∅.

We now derive the identified set for the average potential outcome of the non-targeted treatment. First,

note that −g(0, 1) = −U(1) < −U(1) = −g(1, 1) and −g(0, 2) = −U(2) > −U(2) = −g(1, 2). Therefore, it

can be verified from Figure 2 that for all Q ∈ Q,

Q{(D0, D1) ∈ {(0, 0), (1, 0), (1, 1), (0, 2), (1, 2), (2, 2)}} = 1 . (30)

Let Q′ denote the set of all distributions that satisfies (30). Note that all Q ∈ Q satisfies (30), so Q ⊆ Q′. On

the other hand, by assigning appropriate probabilities to each set in the partition in Figure 2, we immediately

see that each Q ∈ Q′ can be rationalized by a Q ∈ Q. Therefore, Q = Q′. Using linear programming as in

Balke and Pearl (1993, 1997), we obtain the following identified set for EQ[Y0] = Q{Y0 = 1} relative to Q:

[
max

{
p10|0

p10|1

}
, min

{
1− p00|1

1− p00|0

}]
. (31)

The identified set in (31) equals (9) for d = 0 with Y and Z binary. Thus, the identified set for EQ[Y0] relative

to Q corresponds to the identified set relative to Q∗
3, the set of distributions that satisfy mean independence,

3.2. By the same sandwich argument used to prove Theorem 3.3, the identified set for EQ[Y0] relative to Q

corresponds to the identified set relative to Q∗
1, and thus imposing this ARUM has no identifying power for

EQ[Y0] beyond instrument exogeneity.

Finally, we show that there exists a P for which Q0(P,Q) ̸= ∅ and (31) is strictly smaller than (6), so
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that Θ0(P,Q) is not given by (6). We do so by providing a numerical example. Consider the P specified

in Table 8 and the Qarum,min and Qarum,max specified in Tables 9 and 10 respectively, where we write

q(y0y1y2, d0d1) = Q{Yd = yd, Dz = dz, (d, z) ∈ D × Z} and omit any q(·) = 0. One can check that

both Qarum,min and Qarum,max rationalize P and satisfy Assumption 2.1. One can further check that both

Qarum,min and Qarum,max satisfy the restriction in (30), so that Q0(P,Q) ̸= ∅. Evaluating (31) at P gives the

identified set for EQ[Y0] relative to Q as [0.2518, 0.8167]. One can further check that the two endpoints are

attained by EQarum,min
[Y0] = 0.2518 and EQarum,max

[Y0] = 0.8167. On the other hand, if one evaluates (6) by

setting z∗(0) = 0, 1 at the same P , the resulting bounds for EQ[Y0] equal [p10|0, 1− p00|0] = [0.2518, 0.8937]

and [p10|1, 1 − p00|1] = [0.2372, 0.8167] respectively. In both cases, (31) is strictly contained in (6). Hence,

Θ0(P,Q) is not given by (6).

p00|0 p10|0 p01|0 p11|0 p02|0 p12|0
0.1063 0.2518 0.2946 0.3183 0.0020 0.0270

p00|1 p10|1 p01|1 p11|1 p02|1 p12|1
0.1833 0.2372 0.0140 0.1399 0.1701 0.2555

Table 8: Distribution P in Appendix B.4.

q(000, 10) q(000, 11) q(000, 12) q(000, 22) q(001, 02) q(001, 12)
0.0049 0.0140 0.1535 0.0020 0.1063 0.1222

q(001, 22) q(010, 10) q(010, 11) q(100, 00) q(100, 02)
0.0270 0.1784 0.1399 0.2372 0.0146

Table 9: Distribution Qarum,min.

q(000, 00) q(010, 10) q(100, 00) q(100, 10) q(100, 11) q(100, 02)
0.1063 0.0770 0.0837 0.0521 0.0140 0.1681

q(100, 22) q(101, 12) q(101, 22) q(110, 10) q(110, 11)
0.0020 0.2285 0.0270 0.1014 0.1399

Table 10: Distribution Qarum,max.

C Additional Examples of Models That Satisfy Assumption 2.2

In Section 4, we considered examples of restrictions on potential treatments previously considered in the

literature that satisfy generalized monotonicity. We now consider three additional such examples.

Example C.1. Consider the ARUM of Example 4.4 when |D| = 2, and let Q denote the set of distributions

defined in that example. Then, Assumption 2.2 holds for all Q ∈ Q. To see this, consider Q ∈ Q. Label

D = {0, 1}, and let g10(z) = g(z, 1) − g(z, 0) and U10 = U1 − U0. The assumptions of Example 4.4 on

(U1, U0) imply that the distribution of U10 is absolutely continuous with respect to Lebesgue measure and

that U10 ⊥⊥ Z. Ignoring ties that occur with probability zero, (11) can be rewritten as

Dz = 1{g10(z) + U10 ≥ 0} . (32)

Let Z = argmaxz∈Z{g10(z)}, and let Z = argminz∈Z{g10(z)}. Then, Q satisfies Assumption 2.2 with
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Z∗(1) = Z and Z∗(0) = Z. To contrast with Example 4.4, note that (12) holds if and only if Z and Z are

both singletons.

Example C.2. Kline and Walters (2016) considers an RCT with a “close substitute” to study the effects

of preschooling on educational outcomes. In their setting, D ∈ D = {0, 1, 2}, where D = 0 denotes home

care (no preschool), D = 2 denotes a preschool program called Head Start, and D = 1 denotes preschools

other than Head Start, namely the close substitute. Let Z ∈ Z = {0, 1} denote an indicator variable for an

offer to attend Head Start. Assumption 2.1 holds because Z is randomly assigned. Kline and Walters (2016)

impose the restriction that

Q{D1 = 2 | D0 ̸= D1} = 1 . (33)

The condition in (33) states that if the choice of a family changes upon receiving a Head Start offer, then

they must choose Head Start when receiving the offer. In other words, it cannot be the case that upon

receiving a Head Start offer, a family switches from no preschool to preschools other than Head Start, or the

other way around. Assumption 2.2 then holds with z∗(0) = z∗(1) = 0 and z∗(2) = 1. To see this, note that

(33) implies Q{D0 ̸= D1, D1 ̸= 2} = 0 and thus

Q{D0 ̸= 0, D1 = 0} = Q{D0 ̸= D1, D1 = 0} = 0 ,

Q{D0 ̸= 1, D1 = 1} = Q{D0 ̸= D1, D1 = 1} = 0 ,

Q{D1 ̸= 2, D0 = 2} ≤ Q{D0 ̸= D1, D1 ̸= 2} = 0 .

Note in this example Assumption 2.2 still holds although |Z| < |D|. See Bai et al. (2025b) for results on the

sharp testable implications of the assumptions for this example and Example C.3.

Example C.3. Kirkeboen et al. (2016) study the effects of fields of study on earnings. In their setting,

D = {0, 1, 2} represent three fields of study, ordered by their (soft) admission cutoffs from the lowest to the

highest. The instrument is Z ∈ {0, 1, 2}, with Z = 1 when the student crosses the (soft) admission cutoff

for field 1, Z = 2 when the student crosses the (soft) admission cutoff for field 2, and Z = 0 otherwise. The

authors assume that Z is exogenous in the sense that Q satisfies Assumption 2.1 and impose the following

monotonicity conditions:

Q{D1 = 1 | D0 = 1} = 1 , (34)

Q{D2 = 2 | D0 = 2} = 1 . (35)

The conditions in (34)–(35) require that crossing the cutoff for field 1 or 2 weakly encourages them towards

that field. They further impose the following “irrelevance” conditions:

Q{1{D1 = 2} = 1{D0 = 2} | D0 ̸= 1, D1 ̸= 1} = 1 , (36)

Q{1{D2 = 1} = 1{D0 = 1} | D0 ̸= 2, D2 ̸= 2} = 1 . (37)

The condition in (36) states that if crossing the cutoff for field 1 does not cause the student to switch to

field 1, then it does not cause them to switch to or away from field 2. A similar interpretation applies to
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(37). Lee and Salanié (2023) show the set of all distributions that satisfy (34)–(37) are equivalent to a strict

one-to-one targeting model with |Z| = 3 and |D†| = 2; it therefore follows from Remark 4.5 that any Q that

satisfies (34)–(37) also satisfies Assumption 2.2. Here, we establish directly that (34)–(37) imply Assumption

2.2 with z∗(0) = 0, z∗(1) = 1, and z∗(2) = 2. To show z∗(0) = 0, we prove by contradiction that

Q{D0 ̸= 0, D1 = 0} = 0 .

Suppose with positive probability that D0 ̸= 0 but D1 = 0. On this event, (34) implies D0 ̸= 1, so D0 = 2.

But D1 = 0, which contradicts (36). Similarly,

Q{D0 ̸= 0, D2 = 0} = 0 ,

and therefore z∗(0) = 0. To show z∗(1) = 1, first note (34) implies

Q{D1 ̸= 1, D0 = 1} = 0 .

It therefore remains to argue by contradiction that

Q{D1 ̸= 1, D2 = 1} = 0 . (38)

Suppose with positive probability that D1 ̸= 1 but D2 = 1. On this event, (34) implies D0 ̸= 1. If D0 = 2,

then (35) implies D2 = 2, a contradiction to D2 = 1; if instead D0 = 0, then because we assume D2 = 1, (37)

implies D2 ̸= 1, another contradiction. Therefore, (38) holds, and z∗(1) = 1. z∗(2) = 2 can be established

following similar arguments.
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