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Optimality of  Matched-Pair Designs 
in Randomized Controlled Trials†

By Yuehao Bai*

In randomized controlled trials, treatment is often assigned by strat-
ified randomization. I show that among all stratified randomiza-
tion schemes that treat all units with probability one half, a certain 
 matched-pair design achieves the maximum statistical precision for 
estimating the average treatment effect. In an important special case, 
the optimal design pairs units according to the baseline outcome. In 
a simulation study based on datasets from ten randomized controlled 
trials, this design lowers the standard error for the estimator of the 
average treatment effect by 10 percent on average, and by up to 34 
percent, relative to the original designs. (JEL C13, C21)

This paper studies the optimality of  matched-pair designs in randomized controlled 
trials (RCTs).  Matched-pair designs are examples of stratified randomization, in which 
the researcher partitions a set of units into strata (groups) based on their observed 
covariates and assigns a fraction of units in each stratum to treatment. A  matched-pair 
design is a stratified randomization scheme with two units in each stratum.

Stratified randomization is prevalent in economics. Among the 5,000 RCTs in the 
AEA RCT Registry, more than 800 are stratified. The schemes in these papers, how-
ever, differ vastly in terms of the covariates used to stratify and how fine the strata are. 
Among these 800 RCTs, around 50 use  matched-pair designs. Moreover, 56 percent 
of the researchers interviewed in Bruhn and McKenzie (2009) have used  matched-pair 
designs at some point in their research. Yet, despite the frequency with which applied 
researchers make decisions about how to stratify, there are few general econometric 
results on whether  matched-pair designs lead to better precision of estimators of treat-
ment effects than other stratified randomization schemes and the best way to pair units.
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I derive the exact form of the stratified randomization scheme that has the max-
imum statistical precision for estimating the average treatment effect (ATE). The 
optimal scheme is a  matched-pair design. In an important special case, the optimal 
design is to order the units according to the baseline values of the primary outcome 
variable of interest and then pair the adjacent units. When I simulate this sim-
ple design using data from ten recent papers in the American Economic Journal: 
Applied Economics, I find it lowers the standard error of the  difference-in-means 
estimator by 10 percent on average, and by up to 34 percent, relative to the 
designs actually used in those studies. I also find some more complicated strati-
fications with strata of four units according to multiple covariates could further 
lower both the mean-squared error (MSE) and the standard error. Based on these 
findings, I make practical recommendations across a wide range of empirical 
settings.

In Section II, I study settings where the treated fractions are identically 1/2 across 
strata. In such settings, a common estimator for the ATE is the difference in the 
means of the treated and control groups. The properties of the  difference-in-means 
estimator, however, vary substantially with how the researcher stratifies. To begin, 
consider the thought experiment where we know the distributions of the potential 
outcomes. Let  Y (1)   denote the potential outcome if a unit is treated and let  Y (0)   
denote the potential outcome if it is not treated. Let  X  denote the observed, base-
line covariates. I define an index function  E [Y (1)  + Y (0)  | X]  , the expected sum of 
the potential outcomes given the covariates. My first result shows the  MSE of the 
 difference-in-means estimator is minimized by a  matched-pair design, where units 
are ordered according to this index function and paired adjacently. My optimality 
result holds at any sample size and without any distributional assumption beyond 
the existence of moments. In particular, my result does not rely on restrictions on 
treatment effects heterogeneity.

I describe a special case where the optimal stratification is feasible even with-
out knowing the index function. Suppose  X  contains a single covariate. Further 
suppose both  Y (1)   and  Y (0)   are higher in expectation when  X  is higher, so that  
 E [Y (1)  + Y (0)  | X]   is increasing in  X . In this case, pairing units according to  X  
is optimal. An important example in empirical practice is when  X  is the baseline 
value of the primary outcome variable of interest. For instance, in Angrist and Lavy 
(2009), the primary outcome variable of interest is a test score and the treatment 
is an educational program, so we expect a higher baseline test score ( X ) implies a 
higher endline test score ( Y (1)   and  Y (0)  ) in expectation.

If researchers are unsure about the monotonicity condition, or if multiple covari-
ates are available, then the optimal stratification is generally unknown because 
the index function is generally unknown. As such, Section III studies several fea-
sible procedures. With multiple covariates, I study pairing units to minimize the 
(Mahalanobis) distances of the covariates. In settings with auxiliary data, such as 
data from pilot studies, I propose several  matched-pair designs in which the index 
function is approximated by a proxy based on the auxiliary data.

In Section IV, to compare the performance of these practical procedures, I study 
the asymptotic properties of the  difference-in-means estimator. I show that relative 
to not stratifying, pairing according to any function of the covariates can only reduce 
the limiting variance of the  difference-in-means estimator. Moreover, the limiting 
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variance is lower if the stratifying variables explain a larger proportion of the vari-
ation in  Y (1)  + Y (0)  .

In Section  V, I conduct a simulation study using data from a systematically 
selected set of ten RCTs from recent issues of the American Economic Journal: 
Applied Economics. Relative to the original stratifications used in those ten 
papers, if the researchers had just paired the units according to their baseline out-
comes, then the MSE of the  difference-in-means estimator would be 24 percent 
smaller on average and 56 percent smaller in some cases. The standard error of 
the  difference-in-means estimator would be 10 percent smaller on average and 34 
percent smaller in some cases.

Among all methods in the simulation, pairing units to minimize the sum of the 
squared Mahalanobis distances of the covariates usually leads to the smallest MSEs. 
When the number of covariates is large, however, the standard error could be even 
larger than the standard error when pairing according to the baseline outcome alone. 
Intuitively, this is because the quality of the variance estimator is lower when the 
curse of dimensionality is more severe. An alternative that balances the MSE and 
the standard error is to match units into sets of four, instead of pairs, to minimize the 
sum of the squared Mahalanobis distance of the covariates. Such a method has both 
smaller MSEs and standard errors than pairing according to the baseline outcome 
alone while being computationally more intensive.

I conclude with recommendations for empirical practice in Section  VI. I rec-
ommend different stratifications based on the availability of auxiliary datasets and 
whether one main outcome of interest clearly dominates the others. All of my rec-
ommended procedures are defined by pairing units or matching units into sets of 
four according to all or a subset of the available covariates.

Related Literature.—This paper is most closely related to Barrios (2013) and 
 Tabord-Meehan (forthcoming). Barrios (2013) studies minimizing the variance of 
the  difference-in-means estimator. He is the first to show pairing units according 
to my index function is optimal among all  matched-pair designs, albeit under the 
assumption of homogeneous treatment effects. My optimality result holds among 
all stratified randomization schemes and with heterogeneous treatment effects. 
 Tabord-Meehan (forthcoming) studies optimality within a class of stratification 
trees. Because the number of strata is fixed in his asymptotic framework, he can opti-
mize over the treated fraction in each stratum. In a  matched-pair design, the number 
of strata is half of the sample size and hence not fixed as the sample size increases, 
so  matched-pair designs are precluded in his framework. In online Appendix C.2, I 
elaborate on the comparison between the two papers and further note that combining 
our procedures is straightforward.

The following papers also study  matched-pair designs: Greevy et  al. (2004) 
study pairing units to minimize the sum of the squared Mahalanobis distances of the 
covariates. Imai (2008) studies  matched-pair designs, focusing on the sample ATE. 
The inference methods in this paper build on and extend those in Bai, Romano, 
and Shaikh (2021). In addition, inference under  matched-pair designs has also been 
studied in Abadie and Imbens (2008), who assume a different sampling framework; 
Fogarty (2018a, b), who provides conservative estimators for the limiting variance; 
and de Chaisemartin and  Ramirez-Cuellar (2021) in a  finite-population setting.
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I. Setup and Notation

Let   Y i    denote the observed outcome of interest for the  i th unit, let   D i    denote the 
treatment status for the  i th unit, and let   X i    denote the observed, baseline covariates 
for the  i th unit. Further denote by   Y i   (1)   the potential outcome of the  i th unit if treated 
and by   Y i   (0)   if not treated. As usual, the observed outcome is related to the potential 
outcomes and treatment status by the relationship

   Y i   =  Y i   (1)   D i   +  Y i   (0)  (1 −  D i  ) . 

For ease of exposition, I assume the sample size is even and denote it by  2n . I 
assume   ( ( Y i   (1) ,  Y i   (0) ,  X i  )  : 1 ≤ i ≤ 2n)   is an i.i.d. sequence of random vectors. 
Note the potential outcomes and the covariates are drawn from a population and 
hence are random instead of fixed. For any random vector indexed by  i ,   A i   , define  
  A    (n)   =  ( A 1  ,  …,  A 2n  )  ′. The main parameter of interest is the ATE:

  θ = E [ Y i   (1)  −  Y i   (0) ] . 

In stratified randomization, I first partition the set of units into strata. Formally, I 
define a stratification  λ =  { λ s   : 1 ≤ s ≤ S}   as a partition of   {1,  …, 2n}  :

 (i)   λ s   ⋂  λ s′   = ∅  for all  s  and  s ′ such that  1 ≤ s ≠ s′ ≤ S ;

 (ii)    ⋃ 
1≤s≤S

   λ s    =  {1,  …, 2n}  .

Let   Λ n    denote the set of all stratifications of  2n  units. Define   n s   = | λ s  |  and   τ s    as the 
treated fraction in stratum   λ s   . A  matched-pair design is simply a stratified random-
ization scheme with  S = n  and   n s   = 2  for  1 ≤ s ≤ S . I define   Λ  n  pair  ⊆  Λ n    as the 
set of all  matched-pair designs for  2n  units.

I make the following assumption on the treatment assignment scheme:

ASSUMPTION 1: Given the covariates   X    (n)   , treatment status is determined as 
follows: independently for  1 ≤ s ≤ S , uniformly at random choose   n s    τ s    units in   
λ s   , and assign   D i   = 1  to them and   D i   = 0  to the other units in   λ s   . Furthermore,   
τ s   =   1 _ 2    for  1 ≤ s ≤ S .

Assumption 1 implies

(1)   ( Y    (n)   (0) ,  Y    (n)   (1) )  ⊥  D    (n)   |  X    (n)  . 

In other words, treatment status and potential outcomes are conditionally indepen-
dent given the covariates. Assumption 1 also implies   n s    has to be even because a 
unit cannot be cut in half. Note the distribution of the vector of treatment status   D    (n)    
depends on  λ . Most results below can be extended to settings where   τ s  , 1 ≤ s ≤ S  
are identical but not  1/2 , or where they are additionally allowed to vary across sub-
populations. See Remark 2 for details.
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For all treatment assignment schemes in the main text, I estimate the ATE by the 
difference in the means of the treated and control groups. Formally, for  d ∈  {0, 1}  ,  
define

    μ ˆ   n   (d)  =   1 _ n     ∑ 
1≤i≤2n: D i  =d

  
 
    Y i  . 

The  difference-in-means estimator is defined as

    θ ˆ   n   =   μ ˆ   n   (1)  −   μ ˆ   n   (0) . 

The  difference-in-means estimator is widely used because it is simple and trans-
parent. Under Assumption 1, it coincides with the ordinary least squares (OLS) 
estimator for the coefficient in the linear regression of the outcome on treatment 
status and strata fixed effects and the OLS estimator from the fully saturated version 
of that regression, both of which are also widely used in analyses of RCTs. See, 
for example, Duflo, Glennerster, and Kremer (2007); Glennerster and Takavarasha 
(2013); and Crépon et al. (2015).

II. Optimal Stratification

This section studies the optimal stratification. To preview the results, define the 
index function

(2)  g (x)  = E [ Y i   (1)  +  Y i   (0)  |  X i   = x] . 

I show the optimal stratification is given by ordering the units according to  
  g i   = g ( X i  )   and then pairing the adjacent units. In the special case where   X i    is a 
scalar and  E [ Y i   (1)  |  X i   = x]   and  E [ Y i   (0)  |  X i   = x]   are both weakly increasing (or 
both weakly decreasing) in  x , the optimal stratification is given by ordering the units 
according to   X i    and then pairing the adjacent units.

The analysis in this section is conditional on   X    (n)   . In this section only, instead of 
the population ATE, I focus on the ATE conditional on   X    (n)   :

   θ n   =   1 _ 
2n

     ∑ 
1≤i≤2n

  
 
   E [ Y i   (1)  −  Y i   (0)  |  X i  ] . 

Focusing on   θ n    simplifies the discussion. Moreover, conditional on a fixed sample 
with covariates   X    (n)   , I can only hope to be unbiased for   θ n    instead of  θ . The conclu-
sions of the theorems in this section are the same regardless of whether the param-
eter of interest is   θ n    or  θ .

My objective function is the MSE of    θ ˆ   n    for   θ n    conditional on   X    (n)    under a strati-
fication  λ ∈  Λ n   :

  MSE (λ |  X    (n)  )  =  E λ   [  (  θ ˆ   n   −  θ n  )    
2
  |  X    (n)  ] . 
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Here, the notation   E λ    indicates the distribution of the vector of treatment status  
  D    (n)    depends on the stratification. I consider minimizing the conditional MSE over 
the set of all stratifications:

(3)    min  
λ∈ Λ n  

   MSE (λ |  X    (n)  ) . 

In what follows, I derive the optimal stratification as the solution to (3). I emphasize 
that by a simple  bias-variance decomposition, one can show (3) is equivalent to the 
problem where   θ n    is replaced by  θ , so focusing on   θ n    in this section is genuinely 
without loss of generality.

Solving (3) involves two intermediate results, each carrying additional insights 
into the problem. To describe the first intermediate result, I define the  ex ante bias 
of    θ ˆ   n    for   θ n    conditional on   X    (n)    as

   Bias  n,λ  ante  (  θ ˆ   n   |  X    (n)  )  =  E λ   [  θ ˆ   n   |  X    (n)  ]  −  θ n  , 

and the  ex post bias of    θ ˆ   n    for   θ n    conditional on   X    (n)    and   D    (n)    as

   Bias  n  post  (  θ ˆ   n   |  X    (n)  ,  D    (n)  )  = E [  θ ˆ   n   |  X    (n)  ,  D    (n)  ]  −  θ n  . 

Here,  ex ante bias refers to the bias conditional only on the covariates, before treat-
ment status is realized;  ex post bias refers to the bias conditional on both the covari-
ates and treatment status, after treatment status is realized. Note in the definition of 
the  ex post bias, the  λ  subscript does not appear because   D    (n)    is already given. Note 
from the definition of the  difference-in-means estimator that

(4)    θ ˆ   n   =   1 _ n     ∑ 
1≤i≤2n

  
 
    ( Y i   (1)   D i   −  Y i   (0)  (1 −  D i  ) ) . 

By Assumption 1, the marginal treatment probability of each unit satisfies  
  E λ   [ D i   |  X    (n)  ]  =   1 _ 2   , and together with the conditional independence assumption in 
(1), they imply

   E λ   [  θ ˆ   n   |  X    (n)  ]  =  θ n  . 

Therefore, the  ex ante bias is identically zero across  λ ∈  Λ n   , which is not surpris-
ing because the  ex ante bias should be zero if we run an experiment. By the law of 
iterated expectations,

   E λ   [ Bias  n  post  (  θ ˆ   n   |  X    (n)  ,  D    (n)  )  |  X    (n)  ]  =  Bias  n,λ  ante  (  θ ˆ   n   |  X    (n)  )  = 0, 

so the mean of the  ex post bias over the distribution of treatment status equals the 
 ex ante bias, which is zero.
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The first intermediate result is a decomposition of the conditional MSE in (3). 
Because   E λ   [  θ ˆ   n   −  θ n   |  X    (n)  ]  = 0 , by the law of total variance,

(5)    MSE (λ |  X    (n)  )  = var [  θ ˆ   n   −  θ n   |  X    (n)  ] 

 =  E λ   [var [  θ ˆ   n   −  θ n   |  X    (n)  ,  D    (n)  ]  |  X    (n)  ]  

 +  var λ   [E [  θ ˆ   n   |  X    (n)  ,  D    (n)  ]  −  θ n   |  X    (n)  ] . 

For any  λ ∈  Λ n   , the first term on the  right-hand side of (5) equals

   E λ   [  
1 _ 
 n   2 

     ∑ 
1≤i≤2n

  
 
    (var [ Y i   (1)  |  X i  ]   D i   + var [ Y i   (0)  |  X i  ]  (1 −  D i  ) )  |  X    (n)  ] 

       =   1 _ 
2  n   2 

     ∑ 
1≤i≤2n

  
 
    (var [ Y i   (1)  |  X i  ]  + var [ Y i   (0)  |  X i  ] ) , 

which is identical across all  λ ∈  Λ n   . Note I used the conditional independence 
assumption in (1), the facts that   θ n    is a constant given   X    (n)   , that   D i   (1 −  D i  )  = 0  for  
1 ≤ i ≤ 2n , and that   E λ   [ D i   |  X    (n)  ]  =   1 _ 2   . Hence, (3) is further equivalent to min-
imizing the second term on the  right-hand side of (5), which is the variance of the 
 ex post bias:

   var λ   [ Bias  n  post  (  θ ˆ   n   |  X    (n)  ,  D    (n)  )  |  X    (n)  ] . 

The discussion so far leads to my first intermediate result:

LEMMA 1: Suppose the treatment assignment scheme satisfies Assumption 1. Then, 
(3) is equivalent to

    min  
λ∈ Λ n  

    var λ   [ Bias  n  post  (  θ ˆ   n   |  X    (n)  ,  D    (n)  )  |  X    (n)  ] . 

Next, I describe the second intermediate result in solving (3). The result states any 
stratification is a convex combination of  matched-pair designs. Formally, for  λ, λ′ ∈  
Λ  n  pair   and  δ ∈  [0, 1]  , define  δλ ⊕  (1 − δ) λ′  as the randomization between  λ  and  λ′  
such that  λ  is implemented with probability  δ . Define the convex hull formed by all 
convex combinations of any finite number of  matched-pair designs as

   co ( Λ  n  pair )  =   {    ⊕  
1≤j≤J

    δ j    λ   j  :  λ   j  ∈  Λ  n  pair , 

   δ j   ≥ 0 for 1 ≤ j ≤ J,   ∑ 
1≤j≤J

     δ j   = 1, 1 ≤ J < ∞ }  .  

In other words, a member of the convex hull is the “mixing” of  J   matched-pair 
designs, where  J  is finite.
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For example, suppose  2n = 4 . Then, four stratifications are possible:

   λ   0  =  { {1, 2, 3, 4} } , 

   λ   1  =  { {1, 2} ,  {3, 4} } , 

   λ   2  =  { {1, 3} ,  {2, 4} } , 

   λ   3  =  { {1, 4} ,  {2, 3} } . 

Stratification   λ   0   puts four units in the same stratum,   λ   1   pairs 1 and 2 together and 3 
and 4 together, and   λ   2   and   λ   3   are defined similarly. Note that implementing each of 
the three  matched-pair designs with probability  1/3  is equivalent to implementing   λ   0  ,  
in the sense that the distributions of   ( D 1  ,  D 2  ,  D 3  ,  D 4  )   are the same under the two 
implementations. Indeed, under   λ   1  ,   ( D 1  ,  D 2  ,  D 3  ,  D 4  )   takes the following four values 
each with probability  1/4 :   (1, 0, 1, 0)  ,   (1, 0, 0, 1)  ,   (0, 1, 1, 0)  ,   (0, 1, 0, 1)  . Similarly, 
under   λ   2  , it takes the following four values each with probability  1/4 :   (1, 0, 0, 1)  ,   
(1, 1, 0, 0)  ,   (0, 0, 1, 1)  ,   (0, 1, 1, 0)  . Under   λ   3  , it takes the following four values each 
with probability  1/4 :   (1, 0, 1, 0)  ,   (1, 1, 0, 0)  ,   (0, 1, 0, 1)  ,   (0, 0, 1, 1)  . Accordingly, under  
   1 _ 3    λ   1  ⊕   1 _ 3    λ   2  ⊕   1 _ 3    λ   3  , it takes the following six values each with probability  1/6 :   
(1, 1, 0, 0)  ,   (1, 0, 1, 0)  ,   (1, 0, 0, 1)  ,   (0, 1, 1, 0)  ,   (0, 1, 0, 1)  ,   (0, 0, 1, 1)  . This distribution is 
the same as that of   ( D 1  ,  D 2  ,  D 3  ,  D 4  )   under   λ   0  , where two out of four units are treated 
uniformly at random. As a result,   λ   0  ∈ co ( { λ   1 ,  λ   2 ,  λ   3 } )  , meaning   λ   0   can be writ-
ten as a convex combination of the three  matched-pair designs.

I show in online Appendix A that the result above holds in general and summarize 
it into the following lemma:

LEMMA 2: If the treatment assignment scheme satisfies Assumption 1, then   Λ n   ⊆ co 
( Λ  n  pair )  . In other words, any stratification is a convex combination of  matched-pair 
designs.

Combining Lemmas 1 and 2 to minimize the MSE as in (3) is now straightfor-
ward. To state the result, I need an equivalent notation for  matched-pair designs. 
Recall that a permutation of   {1,  …, 2n}   is a function that maps   {1,  …, 2n}   onto 
itself. Let   Π n    denote the group of all permutations of   {1,  …, 2n}  . A  matched-pair 
design is a stratified randomization scheme with

  λ =  { {π (2s − 1) , π (2s) }  : 1 ≤ s ≤ n} , 

where  π ∈  Π n   . Recall the definition of the index function  g  in (2) and order the units 
by defining   π   g  ∈  Π n    that satisfies   g  π   g  (1)    ≤ … ≤  g  π   g  (2n)    . Define the stratification

(6)   λ   g  ( X    (n)  )  =  { { π   g  (2s − 1) ,  π   g  (2s) }  : 1 ≤ s ≤ n} . 

The stratification in (6) is given by ordering the units according to   g i    and then pair-
ing the adjacent units. I now show it minimizes the MSE as in (3).
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For each  λ ∈  Λ n   , define  V (λ)   as the objective in Lemma 1. Recall  
  g    (n)   =  ( g 1  ,  …,  g n  )  ′. Then,

    V (λ)  =  var λ   [E [  θ ˆ   n   |  X    (n)  ,  D    (n)  ]  −  θ n   |  X    (n)  ]  

  =   1 _ 
 n   2 

   var λ   [  ∑ 
1≤i≤2n

    ( D i   E [ Y i   (1)  |  X i  ]  −  (1 −  D i  ) E [ Y i   (0)  |  X i  ] )  |  X    (n)  ]  

  =   1 _ 
 n   2 

   var λ   [  ∑ 
1≤i≤2n

    D i   (E [ Y i   (0)  |  X i  ]  + E [ Y i   (1)  |  X i  ] )  |  X    (n)  ]  

  =   1 _ 
 n   2 

   ( g    (n)  )  ′ var λ   [ D    (n)   |  X    (n)  ]  g    (n)  , 

where the first equality follows from the definition of the  ex post bias, the sec-
ond equality follows from (4) and the fact that   θ n    is a constant given   X    (n)   , and 
the last two equalities follow by inspection. Recall the variance of   D i    is    1 _ 4   . Also 
recall that for a  matched-pair design, the covariance between treatment status of 
the two units in a pair is  −   1 _ 4   , and that of units across pairs is 0. Therefore, for any  
 λ =  { {π (1) , π (2) } ,  …,  {π (2n − 1) , π (2n) } }  ∈  Λ  n  pair  ,

  V (λ)  =   1 _ 
4  n   2 

     ∑ 
1≤s≤n

  
 
     ( g π (2s−1)    −  g π (2s)   )    2 . 

Therefore,  V (λ)   is proportional to the sum of squared distances of  g  within each 
pair. By Lemma B.1 in the online Appendix, which is a simple consequence of 
the  Hardy-Littlewood-Pólya rearrangement inequality,  V ( λ   g  ( X    (n)  ) )  ≤ V (λ)   for 
any  λ ∈  Λ  n  pair  . Therefore,   λ   g  ( X    (n)  )   minimizes the MSE among   Λ  n  pair  , the set of all 
 matched-pair designs.

To conclude   λ   g  ( X    (n)  )   is optimal among the set of all stratifications   Λ n   , note each 
stratification is a mixing of  matched-pair designs, and no “mixed strategy” has a 
better payoff than the optimal “pure strategy.” Formally, by Lemma 2, any  λ ∈  Λ n    
can be written as

  λ =   ⊕  
1≤j≤J

    δ j    λ   j , 

where   λ   j  ∈  Λ  n  pair  ,   δ j   ≥ 0  for  1 ≤ j ≤ J , and   ∑ 1≤j≤J  
     δ j   = 1 . As a result,

   MSE (λ |  X    (n)  )  =   ∑ 
1≤j≤J

    δ j   MSE ( λ   j  |  X    (n)  )  

  ≥   min  
1≤j≤J

   MSE ( λ   j  |  X    (n)  )  ≥ MSE ( λ   g  ( X    (n)  )  |  X    (n)  ) , 

where the equality follows from the definition of the MSE, the first inequality fol-
lows because any weighted average of a set of numbers is weakly larger than the 
minimum across them, and the last inequality follows because   λ   g  ( X    (n)  )   minimizes  
MSE (λ |  X    (n)  )   across   Λ  n  pair  . Therefore, I have established my main theorem on the 
optimal stratification:
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THEOREM 1: Suppose the treatment assignment scheme satisfies Assumption 1. 
Then, the  matched-pair design defined in (6) minimizes the MSE as in (3). In other 
words, the optimal stratification is given by ordering the units according to   g i    and 
then pairing the adjacent units.

REMARK 1: Note the optimal stratification does not depend on knowledge of the 
conditional variances of   Y i   (1)   and   Y i   (0)   given   X i   . 

REMARK 2: Theorem C.1 in the online Appendix examines settings where the treated 
fractions are identical across strata but not    1 _ 2   . Formally, suppose   τ s   = τ =   l _ 

k
    for  

1 ≤ s ≤ S , where  l, k ∈ N ,  0 < l < k , and  l  and  k  are mutually prime. Define

(7)   g   τ  ( X i  )  =   
E [ Y i   (1)  |  X i  ]   _ τ   +   

E [ Y i   (0)  |  X i  ]   _ 
1 − τ  , 

where   g   τ   adjusts for the treatment probability by inverse probability weighting. The 
optimal stratification is defined by the following algorithm:

 (i) Order the units according to   g   τ  ( X i  )  .

 (ii) Put the first  k  units in the first stratum, the second  k  units in the second stra-
tum, and so on.

 (iii) Uniformly at random assign  l  of the  k  units in each stratum to treatment.

In this case, the optimal design is not paired, but stratified randomization with the 
appropriate group size remains optimal. For examples in this spirit of small strata, 
see Bold et al. (2018) and Brown and Andrabi (2020).

REMARK 3:  Rerandomization, studied by Morgan and Rubin (2012, 2015), is an 
alternative to stratified randomization.  Rerandomization takes random draws of 
treatment status until it falls in an admissible set. The admissible set is usually 
defined as the collection of treatment assignments under which the distance between 
the treated and control units is below a threshold. The notion of distance can be, 
for instance, the (Mahalanobis) distance in the covariates or the distance in  g . In 
 matched-pair designs, units are matched to minimize the distance between treated 
and control units. As such, each possible realization of the vector of treatment status 
under a  matched-pair design not only belongs to the admissible set but also attains 
the smallest distance within the admissible set. For example, suppose each distinct 
value of the covariate appears twice in the sample. Then, a  matched-pair design is 
equivalent to  rerandomization with the distance threshold set to zero. 

Note from (2) that the index function   g i    is a scalar regardless of the dimension of   
X i   . Moreover, the optimal stratification depends not on the values but merely on the 
ordering of   g i   . For instance, if   X i    is univariate and  g (x)   is monotonic in  x , then the 
optimal stratification in (6) is given by ordering the units by   X i    and then pairing the 
adjacent units. This scenario arises in many settings, especially if   X i    is the baseline 
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value of the primary outcome variable of interest, which is collected in the baseline 
survey before treatment is assigned. For instance, Angrist and Lavy (2009) study the 
effect of an educational program on test scores. In their paper,   X i    is the baseline test 
score, so we expect both  E [ Y i   (1)  |  X i  ]   and  E [ Y i   (0)  |  X i  ]   are weakly increasing in   X i   . I 
record this result as a theorem. Let   π   X  ∈  Π n    be such that   X  π   X  (1)    ≤ … ≤  X  π   X  (2n)    .

THEOREM 2: Suppose   X i    is univariate, the treatment assignment scheme satisfies 
Assumption 1, and  g (x)   in (2) is monotonic in  x . Then,

   λ   g  ( X    (n)  )  =  { { π   X  (2s − 1) ,  π   X  (2s) }   : 1 ≤ s ≤ n} . 

In other words, the optimal stratification is given by ordering the units according to 
their covariate values and then pairing the adjacent units.

III. Feasible Procedures

The optimal stratification in Theorem 1 depends on the index function  g , which 
is generally unknown, so the optimal stratification is also generally unknown. 
Therefore, researchers often need to approximate the index function with some 
proxies, possibly with the help of auxiliary data. This section studies a wide range 
of feasible stratification methods. Some procedures are based on data from pilot 
experiments, which are  smaller-scale copies of the main experiment run on the same 
population. Depending on the availability of a pilot experiment and its sample size, 
different procedures are available. I switch the parameter of interest back to the pop-
ulation ATE  θ , recalling that all results in the previous section hold for both   θ n    and  θ .

A. Settings without Pilot Data

According to Theorem 2, if   X i    is univariate and the index function  g (x)   is mono-
tonic in  x , then the optimal stratification is given by pairing units according to   X i   . A 
prominent example is where   X i    is the baseline value of the primary outcome variable 
of interest, and  E [ Y i   (1)  |  X i   = x]   and  E [ Y i   (0)  |  X i   = x]   are both weakly increasing 
or both weakly decreasing in  x .

Even if the monotonicity condition fails, units can still be paired according to 
their baseline outcomes. Theorem 3 and Remark 4 below study the limiting vari-
ance of the  difference-in-means estimator. They reveal that if we need to choose 
a single covariate to pair on, the smallest limiting variance is attained by pairing 
units according to a covariate that explains the largest proportion of the variation in 
the potential outcomes. Bruhn and McKenzie (2009) note the baseline outcome is 
often such a covariate. Simulation evidence in Section V further shows pairing units 
according to the baseline outcome performs better than the  status-quo methods in 
terms of both the MSE and the standard error of the  difference-in-means estimator.

Regardless of whether the baseline outcome is available, if   X i    is multivariate, 
then researchers can also pair units to minimize the sum of the squared Mahalanobis 
distances of the covariates:

(8)  d ( x 1  ,  x 2  )  =  ( x 1   −  x 2  ) ′   Σ ˆ    n  
−1

  ( x 1   −  x 2  ) . 
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Here,    Σ ˆ   n    is the sample variance matrix of  X . Equation (8) is simply the squared 
Euclidean distance if    Σ ˆ   n    is the identity matrix, and    Σ ˆ    n  −1   serves as a scale normaliza-
tion because different covariates may be measured in different units or have differ-
ent standard deviations. Note

  d ( x 1  ,  x 2  )  =  ∥   Σ ˆ    n  −1/2  ( x 1   −  x 2  )  ∥   
2
 , 

where    Σ ˆ    n  −1/2   is the square root of    Σ ˆ   n   . So the Mahalanobis distance between   x 1    and   
x 2    equals the Euclidean distance between    Σ ˆ    n  −1/2   x 1    and    Σ ˆ    n  −1/2   x 2   .

When the baseline outcome is unavailable but a large amount of auxiliary data are 
available, I can calculate a sample counterpart of (6). In general, the auxiliary data 
need to come from pilot experiments, but in one special case, even observational 
data suffice. If the conditional ATEs are homogeneous, meaning

(9)  E [ Y i   (1)  −  Y i   (0)  |  X i  ]  = E [ Y i   (1)  −  Y i   (0) ]  with probability one, 

then the ordering of   g i    is the same as that of  E [ Y i   (0)  |  X i  ]  . Suppose we have an obser-
vational dataset where the distribution of   ( Y i   (0) ,  X i  )   is the same as that in the main 
experiment. As an example, suppose in an RCT to study the effect of educational 
program on test scores, the researcher has administrative data on the test scores of 
the previous cohort, and the distributions of   ( Y i   (0) ,  X i  )   are the same across the two 
cohorts. Then, they can estimate  E [ Y i   (0)  |  X i   = x]   by a nonparametric regression 
using the data for the previous cohort and pair the units in the current cohort accord-
ing to the predicted values in the regression. A key requirement is that the estima-
tor for  E [ Y i   (0)  |  X i   = x]   is consistent in the sense of Assumption 4 and Theorem 5 
below. Then, as the sample sizes of the auxiliary data and the main experiment both 
increase, the limiting variance of    θ ˆ   n    when units are paired according to the predicted 
values of  E [ Y i   (0)  |  X i  ]   is the same as that under the optimal stratification in (6).

B. Settings with Large Pilots

Next, I consider settings with data from a pilot experiment. Let  m  denote the 
sample size of the pilot experiment. I assume the pilot units are drawn from the same 
population as the main experiment.

I start by investigating settings where the sample size of the pilot experiment is 
large. Formally, in the asymptotic framework, I allow both  m  and  n  to go to infinity. 
I pair units according to a suitable estimator    g ̃   m    of the index function  g , where    g ̃   m    
comes from a nonparametric regression using the pilot data. Again, a key require-
ment is that    g ̃   m    is consistent for  g  in the sense of Assumption 4 and Theorem 5 
below. Then, as the sample sizes of the auxiliary data and the main experiment both 
increase, the limiting variance of    θ ˆ   n    when units are paired according to    g ̃   m    is the 
same as that under the optimal stratification in (6).

If the pilot data are imperfect in the sense that they does not come from the same 
population as the main experiment, or if the estimation method for constructing    g ̃   m    
is not flexible enough, then    g ̃   m    may not converge to  g  but instead to another function  
h . In that case, the limiting variance of    θ ˆ   n    is different from that under the optimal 
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 stratification in (6) and depends on  h , but it is still smaller than that under no strati-
fication. See Theorem 5 and Remark 5 for details.

C. Settings with Small Pilots

In practice, even if pilot data are available, their sample size is often small. In 
those settings, pairing units according to    g ̃   m    generally does not ensure efficiency, 
unlike in settings with large pilots. We may be concerned that    g ̃   m    is a poor approx-
imation of the index function  g , and as a result, if units are paired according to    g ̃   m   , 
then both the conditional MSE and the limiting variance of    θ ˆ   n    are large.

Researchers could of course ignore the information in the small pilot and imple-
ment the procedures in Section IIIA. If they would like to incorporate information 
from the pilot experiment, they can consider the following procedure. For  d ∈  {0, 1}  ,  
let    β ̃   m   (d)   denote the OLS estimators of the linear regression coefficients among 
the treated or untreated units in the pilot experiment and let    Ω ̃   m   (d)   denote the vari-
ance estimators in OLS assuming homoskedasticity (see online Appendix C.5 for 
details). Further define

    β ̃   m   =   β ̃   m   (1)  +   β ̃   m   (0)  

    Ω ̃   m   =   Ω ̃   m   (1)  +   Ω ̃   m   (0) . 

I pair the units to minimize the sum of the following distances of the covariates:

(10)   d   pen  ( x 1  ,  x 2  )  =   ( x  1  ′     β ̃   m   −  x  2  ′     β ̃   m  )    
2
  +  ( x 1   −  x 2  ) ′   Ω ̃   m   ( x 1   −  x 2  ) . 

To shed some light on the behavior of such a minimization problem, I consider 
two extreme cases. If    Ω ̃   m   = 0 , which means    β ̃   m    is very precise, then the solution is 
given by pairing units according to    g ̃   m   =  X  i  ′    β ̃   m   . If    Ω ̃   m    is large, which means    β ̃   m    is 
very imprecise, then the second term on the  right-hand side of (10) dominates the 
first term, so the solution is close to a paired matching weighted by    Ω ̃   m   . Therefore, 
the solution can be viewed as penalizing the pairing according to    g ̃   m   (x)  = x′   β ̃   m   , 
with the penalization determined by the variance estimator    Ω ̃   m   . I refer to the solution 
as the penalized  matched-pair design. In online Appendix C.5, I show it is optimal 
in a Bayesian framework.

D. Other Practical Considerations

Each  matched-pair design discussed in this section has a counterpart where units 
are matched into sets of four instead of pairs. Specifically, I first pair the units and 
then pair the pairs using the midpoints of all pairs, as in Section 4 of Bai, Romano, 
and Shaikh (2021). Such a design is also discussed by Athey and Imbens (2017). It 
often increases the MSE relative to its paired version but often improves inference 
for the ATE, especially with multiple covariates. In particular, simulation evidence 
in Section V shows that, with multiple covariates, the test with matched sets of 
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four usually has the correct size but the test with matched pairs often severely 
underrejects. I refer interested readers to Section IVC for a detailed discussion.

A frequent concern in experiments is attrition, meaning units in the baseline 
survey may drop out in the  follow-up survey, so their covariates are available but 
outcomes are not. I emphasize that even when a unit attrites, the entire pair may 
not need to be dropped. If attrition happens, then I redefine the  difference-in-means 
estimator using only  nonattritors. If attrition is independent of treatment status 
conditional on the covariates, then this estimator is consistent for the ATE for 
 nonattritors. I refer interested readers to online Appendix C.3 for details. The case 
with differential attrition, as in the setting of Lee (2009), is an interesting topic for 
future work.

Another related question that frequently arises in the design of experiments is that 
some studies are implemented in multiple waves. Although a  full-length discussion 
of such settings is beyond the scope of the paper, a possible solution is to implement 
the procedures discussed in this section repeatedly. For instance, in the first wave, 
researchers could pair the units according to their baseline outcomes. In the second 
wave, they could use the data from the first wave as pilot data, and implement the 
 pilot-based procedures discussed earlier in this section. They can repeatedly imple-
ment the  pilot-based procedures in the following waves. In online Appendix C.6, I 
discuss how to pool the data from multiple waves for estimation and inference.

IV. Asymptotic Results and Inference

The optimality result in Section  II pinpoints the optimal stratification but is 
silent on how the feasible procedures in Section III compare with each other. To 
make such a comparison, this section studies the asymptotic properties of the 
 difference-in-means estimator. I also provide inference methods for the ATE under 
different stratifications. The main difficulty in deriving the theoretical results is 
that under  matched-pair designs, treatment status across units is heavily depen-
dent; in fact, treatment status of the two units in a pair is perfectly correlated. 
I extend the results in Bai, Romano, and Shaikh (2021) by allowing units to be 
paired according to functions of the covariates instead of the covariates them-
selves, and furthermore allowing the function to be random and dependent on 
auxiliary data. To begin, I make the following mild moment restriction on the 
distributions of potential outcomes.

ASSUMPTION 2:  E [ Y  i  2  (d) ]  < ∞  for  d ∈  {0, 1}  .

A. Pairing on Nonrandom Functions

I provide general results when units are paired according to a measurable func-
tion  h  that maps from the support of   X i    into  R . The results can be easily specialized 
to the procedures in Section III. Let   π   h  ∈  Π n    be such that   h  π   h  (1)    ≤ … ≤  h  π   h  (2n)     
and define the stratification that pairs units according to  h  as

   λ   h  ( X    (n)  )  =  { { π   h  (2s − 1) ,  π   h  (2s) }  : 1 ≤ s ≤ n} . 
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To describe the requirements on  h , define  H  to be the set of all measurable func-
tions mapping from the support of   X i    into  R  such that the following three conditions 
hold:

 (i)  0 < E [var [ Y i   (d)  | h ( X i  ) ] ]   for  d ∈  {0, 1}  .

 (ii)  E [ Y  i  r  (d)  | h ( X i  )  = z]   is Lipschitz in  z  for  r = 1, 2  and  d = 0, 1 .

 (iii)  E [ h   2  ( X i  ) ]  < ∞ .

Condition (i) is a mild restriction to rule out degenerate situations and to permit 
the application of suitable laws of large numbers and central limit theorems, and 
(iii) is another mild moment restriction to ensure the pairs are “close” in the limit. 
Some restrictive primitive conditions for (ii) are provided in online Appendix B.2. I 
assume  h  lies in the set H.

ASSUMPTION 3:  h ∈ H .

The next theorem establishes the limiting distribution of    θ ˆ   n    when units are paired 
according to  h , where  h  satisfies Assumption 3.

THEOREM 3: Suppose the treatment assignment scheme satisfies Assumption 1, the 
distribution of the data satisfies Assumption 2, and  h  satisfies Assumption 3. Then, 
when units are paired according to  h , as  n → ∞ ,

   √ _ n   (  θ ˆ   n   − θ)    d   ⟶   N (0,  ς  h  2 ) , 

where

(11)    ς  h  2  = var [ Y i   (1) ]  + var [ Y i   (0) ]  

 −   1 _ 
2
   E [  (E [ Y i   (1)  +  Y i   (0)  | h ( X i  ) ]  − E [ Y i   (1)  +  Y i   (0) ] )    

2
 ] . 

REMARK 4: In online Appendix C.1, I show the minimum of   ς  h  2   over  h ∈ H  occurs 
when  h = g . The law of iterated expectations implies

   ς  h  2  = var [ Y i   (1) ]  + var [ Y i   (0) ]  −   1 _ 
2
   var [g ( X i  ) ]  +   1 _ 

2
   E [var [g ( X i  )  | h ( X i  ) ] ] , 

so the increase in the limiting variance when pairing according to  h  instead of  g  
is proportional to  E [var [g ( X i  )  | h ( X i  ) ] ]  , the average conditional variance of  g ( X i  )   
given  h ( X i  )  . Therefore, among all functions  h ∈ H , choosing an  h  that minimizes  
 E [var [g ( X i  )  | h ( X i  ) ] ]   is optimal. Intuitively, the optimal  h  explains the largest pro-
portion of the variation in  Y (1)   and  Y (0)  .

REMARK 5: Theorem 3 immediately leads to three insights on the comparison of 
different treatment assignment schemes:
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 (i) Stratifications with a small number of large strata can be characterized by a func-
tion  h  mapping from the support of   X i    into   {1,  …, S}  , such that unit  i  is in stratum  
s  if and only if  h ( X i  )  = s . Bugni, Canay, and Shaikh (2018) show the limiting 
variance of    θ ˆ   n    under such a stratification equals   ς  h  2  . Therefore,   ς  h  2  >  ς  g  2   unless  
 g ( X i  )  = E [g ( X i  )  | h ( X i  ) ]   with probability one, which means  g ( X i  )   is con-
stant within each stratum.

 (ii) The stratification   { {1,  …, 2n} }   with all units in one stratum can be writ-
ten as   λ    h c    ( X    (n)  )  , where   h c    is a constant function. For any  h  that satisfies 
Assumption 3,   ς   h c    

2   >  ς  h  2   unless  E [g ( X i  )  | h ( X i  ) ]   is constant with probability 
one. As a result, in terms of the limiting variance of    θ ˆ   n   , any stratification is 
weakly better than not stratifying at all.

 (iii) It follows from straightforward calculation that for any  h ∈ H ,   ς  h  2   is weakly 
less than and typically strictly less than the limiting variance of    θ ˆ   n    when 
treatment status is determined by i.i.d. coin flips.

Theorem C.3 in the online Appendix studies a procedure that “breaks up” a strati-
fication with a small number of large strata. I further allow the treated fractions to 
vary across strata. I show the limiting variance of    θ ˆ   n    is weakly smaller if I implement 
 small-strata designs similar to the ones described in Remark 2 separately within 
each stratum.

Next, I consider inference for the ATE when units are paired according to  h ∈ H .  
For any prespecified   θ 0   ∈ R , I am interested in testing

(12)   H 0   : θ =  θ 0   versus  H 1   : θ ≠  θ 0   

at level  α ∈  (0, 1)  . To do so, it suffices to provide a consistent estimator for the 
limiting variance   ς  h  2   in (11). To describe such an estimator, for  d ∈  {0, 1}  , define the 
variance estimator among units with  D = d  as

    σ ˆ    n  2  (d)  =   1 _ n     ∑ 
1≤i≤2n: D i  =d

  
 
     ( Y i   −   μ ˆ   n   (d) )    2 . 

In addition, define

(13)    ρ ˆ   n   =   2 _ n     ∑ 
1≤j≤⌊  n _ 

2
  ⌋
  

 
    ( Y  π   h  (4j−3)    +  Y  π   h  (4j−2)   )  ( Y  π   h  (4j−1)    +  Y  π   h  (4j)   )  

and

(14)    ς ˆ    h,n  2   =   σ ˆ    n  2  (1)  +   σ ˆ    n  2  (0)  −   1 _ 
2
     ρ ˆ   n   +   1 _ 

2
     (  μ ˆ   n   (1)  +   μ ˆ   n   (0) )    2 . 

The calculation in online Appendix C.4 shows    ς ˆ    h,n  2    is nonnegative. The correction 
term    ρ ˆ   n    is constructed by averaging the product of the sum of the outcomes of adja-
cent pairs of pairs, as in Bai, Romano, and Shaikh (2021).

The following theorem shows the variance estimator in (14) is consistent for the 
limiting variance in (11).
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THEOREM 4: Suppose the treatment assignment scheme satisfies Assumption 1, the 
distribution of the data satisfies Assumption 2, and  h  satisfies Assumption 3. Then, 
when units are paired according to  h , as  n → ∞ ,    ς ˆ    h,n  2    defined in (14) satisfies

    ς ˆ    h,n  2     P   ⟶    ς  h  2 . 

REMARK 6: The correction term    ρ ˆ   n    in (13) is crucial for the consistency of    ς ˆ    h,n  2    in 
(14). In  commonly used tests including the  two-sample  t -test (Riach and Rich 2002; 
Gelman and Hill 2007; Duflo, Glennerster, and Kremer 2007) and the “matched pairs”  
t -test (Moses 2006; Hsu and Lachenbruch 2007; Armitage, Berry, and Matthews 2008; 
Imbens and Rubin 2015; Athey and Imbens 2017), the test statistics are studentized by 
variance estimators whose limits in probability are weakly greater than   ς  h  2  , so these 
tests are asymptotically conservative in the sense that the limiting size is no greater 
than and typically strictly less than the nominal level. For instance, a 5 percent level 
test could have a size of 1 percent. In fact, the limiting size of the “matched pairs”  t 
-test is strictly less than the nominal level unless (9) holds. I refer interested readers to 
Bai, Romano, and Shaikkh (2021) for details.

REMARK 7: Let    h ̃   m    be a function of the pilot data such that    h ̃   m   ∈ H  with proba-
bility one. Then, the proof of Theorems 3 and 4 implies the conclusions therein hold 
for  h =   h ̃   m    conditional on the pilot data with probability one. Because probabilities 
are bounded between zero and one and hence are uniformly integrable, the same 
conclusions hold unconditionally too. In particular, the variance estimator in (14) 
is valid even when the sample size of the pilot experiment is small and fixed. 

B. Pairing on Random Functions

The discussion in the last subsection applies to settings where units are paired 
according to a fixed function  h ∈ H  or a random function    h ̃   m    such that    h ̃   m   ∈ H  
with probability one. Such settings are most relevant when the pilot sample size  m  is 
small. Next, I consider settings where    h ̃   m    converges to a fixed function  h ∈ H  in a 
suitable sense as  m → ∞ . Let   Q X    denote the marginal distribution of   X i   .

ASSUMPTION 4: Let    h ̃   m    be a random function depending on the auxiliary data that 
maps from the support of   X i    into  R , and satisfies

   ∫ 
 
  
 
   |   h ̃   m   (x)  − h (x)  |   2   Q X   (dx)    P   ⟶   0 

as  m → ∞ .

Assumption 4 is commonly referred to as the   L   2   consistency of the    h ̃   m    for  
 h . When the dimension of   X i    is fixed and suitable smoothness conditions hold,  
  L   2   consistency is satisfied by series and sieves estimators (Newey 1997; Chen 2007) 
and kernel estimators (Li and Racine 2007). In some  high-dimensional settings, 
when the dimension of   X i    increases with  n  at suitable rates, it is satisfied by the 
least absolute shrinkage and selection operator (LASSO) estimator (Bühlmann and 
van de Geer 2011; Belloni, Chernozhukov, and Hansen 2014),  regression trees and 
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random forests (Györfi et al. 2002; Wager and Walther 2015), neural nets (White 
1990; Farrell, Liang, and Misra 2018), and support vector machines (Steinwart and 
Christmann 2008). The results therein are either exactly as stated in Assumption 4 
or one of the following:

 (i)   sup  
x
    |   h ̃   m   (x)  − h (x)  |   P   ⟶   0  as  m → ∞ .

 (ii)  E [ |   h ̃   m   (x)  − h (x)  |   2 ]  → 0  as  m → ∞ .

It is straightforward to see (i) implies Assumption 4. Furthermore, (ii) implies 
Assumption 4 by Markov’s inequality.

The next theorem shows that if    h ̃   m    is   L   2   consistent for  h , then as the sample sizes 
of both the pilot and main experiments increase, the limiting variance of    θ ˆ   n    when 
units are paired according to    h ̃   m    is the same as that when units are paired according 
to  h .

THEOREM 5: Suppose the treatment assignment scheme satisfies Assumption 1, 
the distribution of the data satisfies Assumption  2,  h  satisfies Assumption  3, 
and    h ̃   m    satisfies Assumption 4. Then, when units are paired according to  
   h ̃   m   , as  m, n → ∞ ,

   √ _ n   (  θ ˆ   n   − θ)    d   ⟶   N (0,  ς  h  2 )  ,

and

    ς ˆ      h ̃   m  ,n  2     P   ⟶    ς  h  2 . 

REMARK 8: Note the assumptions in Theorems 3 and 4 and those in 5 are  nonnested 
and differ in whether the sample size of the pilot experiment stays fixed or goes 
to infinity in the asymptotic framework. Theorems 3 and 4 do not require    h ̃   m    to 
be consistent for any fixed function and allow  m  to be fixed asymptotically, but 
require    h ̃   m   ∈ H  with probability one. On the other hand, Theorem  5 does not 
require    h ̃   m   ∈ H  but requires  m → ∞  and    h ̃   m    to be   L   2   consistent for  h . 

C. Pairing on Multiple Covariates

We briefly comment on inference when units are paired according to multiple 
covariates. For the settings in (8) and (10), the variance estimators are slightly more 
complicated than that in (14) because the distances in (8) and (10) cannot be written 
as distances between two scalars, but the correction term is similar in spirit to (13). I 
defer the discussion to online Appendix C.5. In addition, note combining data from 
both the pilot and main experiments for estimation and inference is possible. I defer 
the discussion to online Appendix C.6.

When units are paired using multiple covariates, the simulation evidence in 
Section V shows that when the sample size is not large enough relative to the number 
of covariates, the size of the test is often strictly smaller than the nominal level. The 
reason is that the asymptotic results rely on the assumption that units are “close,” in 
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the sense that a suitable normalization of the sum of distances between the covari-
ates within each pair is close to zero. When the sample size is not large enough 
relative to the number of covariates, the procedures here suffer from the curse of 
dimensionality, so the units paired together are not close enough in terms of their 
covariates, and hence, the asymptotic results do not approximate the  finite-sample 
distribution of    θ ˆ   n    very well. The problem is mitigated by matching units into sets of 
four instead of pairs. Specifically, I first pair the units and then pair the pairs using 
the midpoints of all pairs, as in Section 4 of Bai, Romano, and Shaikh (2021). In 
online Appendix C.7, I propose a valid test for (12) when units are matched into sets 
of four. Simulation evidence in Section V shows the size of my proposed test is close 
to the nominal level in finite sample.

V. Simulation

In this section, I examine the performance of the practical procedures in Section III 
and the inference methods in Section IV via a simulation study calibrated to a sys-
tematically selected set of ten RCTs from recent issues of the American Economic 
Journal: Applied Economics. I focus on settings with small or no pilots, because 
they are the most common settings in practice. I searched the 11 issues from October 
2018 to April 2021 and collected 28 papers running RCTs. I exclude 11 papers for 
which the treatment is assigned at the cluster level instead of the unit level. I further 
exclude four papers with a network/spillover structure. I also exclude one paper 
for which the sample size is too small (less than 20). Finally, I exclude two papers 
for which the data are confidential. I end up with ten papers, which are listed in 
Table 1. For each paper, I list whether the baseline outcome is available, the original 
randomization method, and the number of additional covariates besides the baseline 
outcome in the main regression specification of the paper. The full details of the data 
are available in online Appendix D.

For each paper, I denote the sample size by  2n . I use the original sample except for 
 Barrera-Osorio, Linden, and Saavedra (2019), where the original data contain 15,759 
observations and 16 covariates, so one replication in the simulation takes almost six 
hours. For  Barrera-Osorio, Linden, and Saavedra (2019) only, I take half of the obser-
vations as the population to reduce the computational time for one replication to about 
an hour, which is about the same as that using the next largest dataset. I begin by imput-
ing the unobserved potential outcomes. For the  i  th unit, I denote the original data by  
  ( Y  i  ∗ ,  D  i  ∗ ,  X  1i  ∗  ,  X  2i  ∗  )  , where   Y  i  ∗   denotes its observed outcome,   D  i  ∗   denotes its treatment 
status,   X  1i  ∗    denotes its baseline outcome if available, and   X  2i  ∗    denotes the other covari-
ates in the main regression specification of the paper. Let   Y  i  ∗  (1) ,  Y  i  ∗  (0)   denote the 
potential outcomes for the  i th unit. For the  i  th unit,   Y  i  ∗  ( D i  )   is observed, and I con-
struct   Y  i  ∗  (1 −  D i  )   according to the following models:

  Model 1:   Y  i  ∗  (1)  =  Y  i  ∗  (0)  .

  Model 2:   Y  i  ∗  (1 −  D i  )  =  Y  j (i)   ∗   , where the  j (i)  th unit is the closest unit to the  
i th unit in terms of the Mahalanobis distance of   ( X  1  ∗ ,  X  2  ∗ )   among units with  
  D j   ≠  D i   .
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  Model 3:   Y  i  ∗  (1 −  D i  )  =  Y  j (i)   ∗   , where the  j (i)  th unit is the closest unit to the  
 i th unit in terms of the baseline outcome   X  1  ∗  , if available, among units with  
  D j   ≠  D i   .

In model 1, treatment effects are homogeneous, so (9) holds. In models 2 and 3, 
treatment effects are heterogeneous. Note the baseline outcome predicts the poten-
tial outcomes better in model 3 than in model 2.

For each replication, I simulate new data   ( ( Y i   (1) ,  Y i   (0) ,  X i1  ,  X 2i  )  : 1 ≤ i ≤ 2n)   
by drawing  2n  units from the empirical distribution of   ( ( Y  i  ∗  (1) ,  Y  i  ∗  (0) ,  X  1i  ∗  ,  X  2i  ∗  )  :  
1 ≤ i ≤ 2n)  , so each unit in the original data is drawn with equal probability, with 
replacement.

For each paper, I implement several stratifications. Note the covariates may 
have been selected  ex post by authors on the basis of predictive power, while 
ideally I would like to include only the covariates specified in the  preanalysis 
plans. Unfortunately, only one paper includes such information in the AEA RCT 
Registry, and the  preregistered covariates are the same as those in the regression 
analysis. I stratify on the baseline outcome whenever it is available. To stratify 
based on data from pilot experiments, I reached out to the authors of all ten papers 
to request pilot data. Nine out of ten replied, eight of whom said they did not run 
a pilot, and the last said they ran a pilot, but the data were lost. Therefore, I sim-
ulate pilot data by drawing with replacement from the empirical distribution at 
a sample size of  ⌊0.2 ·  (2n) ⌋ . To study the setting with a small and fixed pilot, I 
fix the pilot data throughout all replications. I also consider several stratifications 
with matched sets of four, as in Athey and Imbens (2017). Specifically, strata are 
constructed by first pairing the units and then pairing the pairs according to their 
midpoints, as in Section 4 of Bai, Romano, and Shaikh (2021). The complete list 
of stratifications are as follows:

 (a) MP X: matched pairs to minimize the sum of the squared Mahalanobis dis-
tances in (8) of all covariates  X .

Table 1—Papers Selected for the Simulation Study

Paper Baseline Original stratification
Number of 
covariates

1. Herskowitz (2021)  × none 4
2. Lee et al. (2021) ✓  rerandomization 4
3. Abel et al. (2020) ✓ gender 7
4. Gerber et al. (2020) ✓ state 11
5. Deserranno et al. (2019) ✓ none 1
6.  Barrera-Osorio et al. (2019)  × baseline grade, gender 16
7. Himmler et al. (2019)  × GPA (4 strata) 8
8. Abel et al. (2019) ✓ none 10
9. de Mel et al. (2019) ✓ region, sector 7
10. Lafortune et al. (2018) ✓ none 8

Notes: For each paper, I list whether the baseline outcome is available, the original stratifica-
tion method, and the number of covariates besides the baseline outcome in the main regression 
specification of the paper. Lee et al. (2021) assign treatment status by  rerandomization, and the 
other papers use stratified randomization (possibly with only one stratum).
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 (b) MS X: matched sets of four to minimize the sum of the squared Mahalanobis 
distances of  X .

 (c) MP base: matched pairs according to the baseline outcome, if available.

 (d) MS base: matched sets of four according to the baseline outcome, if available.

 (e) MP X2: matched pairs to minimize the sum of the squared Mahalanobis 
distances of   X 2   , namely, all covariates in the main regression specification 
except the baseline outcome.

 (f) MP pilot: matched pairs according to    g ̃   m    from the pilot, where    g ̃   m    is given by 
the OLS.

 (g) MP pen: the penalized matched pairs given by minimizing the sum of the 
distances in (10) of all covariates.

 (h) Origin: stratification used in the original paper, if not one of (i) through (vii).

 (i) None: no stratification, meaning all units are in one stratum and exactly half 
are treated.

 (i’)  None-reg: no stratification with the estimator given by the OLS estimator of 
the coefficient on  D  in the linear regression of  Y  on a constant,  D , and  X .

The original stratifications are listed in Table 1. I do not consider  rerandomization 
in Lee et al. (2021), because the exact implementation is unclear from the original 
paper, and inference under  rerandomization is complicated. See also Remark 3 for a 
comparison between  rerandomization and  matched-pair designs. Online Appendix 
D contains the results for several additional stratifications. Although it is interesting 
to investigate the performance of regression adjustment with the stratifications in 
Origin, inference with regression adjustment under stratified randomization is still 
an open question.

I consider the following inference methods:

 (i) Matched pairs: (a) (adj) the adjusted  t -test with the variance estimator in (14); 
(b) (MPt) the test with the variance estimator in Theorem 10.1 of Imbens 
and Rubin (2015), which is equivalent to the “matched pairs”  t -test in Bai, 
Romano, and Shaikh (2021).

 (ii) Matched sets of four: (adj4) the adjusted  t -test with the variance estimator in 
(S.50) in online Appendix D;

 (iii) Original: the test in equation (23) of Bugni, Canay, and Shaikkh (2018), 
which is asymptotically exact under stratified randomization.

 (iv) No stratification: without regression adjustment, the  two-sample  t -test with 
the variance estimator given by    σ ˆ    n  2  (1)  +   σ ˆ    n  2  (0)  ; with regression adjustment, 
White’s  heteroskedasticity-robust standard error.
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For matched sets of four, Athey and Imbens (2017) propose a test in a sampling 
framework different from ours. I show in online Appendix C.7 that because of the 
differences in sampling frameworks, the test in Athey and Imbens (2017) does not 
control size in my setting unless the conditional ATEs are homogeneous. Therefore, 
I defer these simulation results to online Appendix D.

For each paper, each model, and each stratification, across  1,000  replications, I 
calculate three metrics of performance: (i) the MSE of estimating  θ  using    θ ˆ   n   , reflect-
ing the precision of the estimator; (ii) the average rejection probability of testing 
(12) for   θ 0   = θ , reflecting the size of the test; and (iii) the average standard error, 
which directly determines the length of the confidence interval for the ATE.

The main results of the simulation study are summarized in Table 2. I only report 
the summary statistics across all papers and models and defer the raw numbers to 
online Appendix D. In particular, for each stratification, I report the average and   
[min , max]   across all papers and models of

 (i) the ratio between the MSE under the particular stratification and the MSE 
under no stratification,

 (ii) the size of the test, and

 (iii) the ratio between the average standard error under the particular stratification 
and the average standard error under no stratification.

Rows are labeled according to the stratifications.

A. Statistical Precision

In this subsection, I discuss major takeaways about statistical precision (specifi-
cally, MSE) from Table 2. I focus on five questions that are particularly relevant to 
empirical practice.

First, how much statistical precision are researchers leaving on the table with their 
current stratification methods? To answer this question, I compare the MSEs under 
the stratifications used in the original paper (origin) and the MSEs when pairing 
according to the baseline outcome (MP base). Relative to the original stratifications 
used in those ten papers, if the researchers had just paired the units according to their 
baseline outcomes, the MSE would be 24 percent smaller on average and 56 percent 
smaller in some cases. In fact, in many models, the MSE under original stratification 
is almost the same as the MSE when not stratifying. As a result, if researchers had 
paired the units according to their baseline outcomes, they could have reached the 
same statistical precision with a much smaller sample size.

Second, how much statistical precision would researchers leave on the table by 
pairing units according to the baseline outcome rather than using more complicated 
feasible methods? Note MP X usually has the smallest MSEs across all methods. On 
average, the MSE under MP base is about 39 percent larger than that under MP X, 
and 10 percent larger than that under MS X. As a result, researchers indeed sacrifice 
some statistical precision by pairing units according to the baseline outcome along 
instead of pairing or matching into sets of four according to all covariates. Note, 
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however, that MP base picks up about half of the difference between the MSEs 
under the best feasible method (MP X) and the  status-quo methods (Origin).

Third, what is the value of collecting just the baseline outcome rather than other 
covariates? To answer this question, I compare the MSEs under MP base and MP 
X2. Note the MSE under MP base is on average only 11 percent larger than and 
sometimes almost the same as that under MP X2. As a result, the statistical precision 
of pairing according to the baseline outcome alone is comparable to the statistical 
precision of pairing according to all other covariates. Note the number of other 
covariates is close to or larger than ten in most cases, so the  per-covariate return for 
collecting all of them is limited relative to collecting the baseline outcome alone.

Fourth, are matched sets of four better than matched pairs in terms of the MSE? To 
answer this question, I compare the MSEs of the MS methods and the MP methods. 
The MSE under MS base is 4 percent larger than that under MP base, and the MSE 
under MS X is 27 percent larger than that under MP X. Therefore, the statistical 
precision is higher with matched pairs. The difference is pronounced when I match 

Table 2—Summary Statistics for MSEs, Size, and Standard Errors for Each Stratification across 
All Papers and Models

Stratification
MSE (ratio  

versus none)
Size (percent) SE (ratio versus none)

adj/adj4 MPt adj/adj4 MPt

(a) MP X 0.549 2.267 3.533 0.870 0.810
[0.304, 0.830] [0.300, 4.800] [1.700, 6.400] [0.720, 0.968] [0.530, 1.092]

(b) MS X 0.695 5.148 – 0.828 –
[0.464, 0.927] [3.600, 6.600] – [0.663, 0.946] –

(c) MP base 0.762 4.771 4.781 0.886 0.885
[0.404, 1.030] [3.200, 5.800] [2.800, 6.200] [0.629, 0.989] [0.633, 1.003]

(d) MS base 0.792 5.257 – 0.882 –
[0.404, 0.982] [4.400, 6.300] – [0.629, 0.991] –

(e) MP X2 0.685 3.126 3.852 0.919 0.874
[0.362, 0.923] [0.500, 6.900] [1.300, 6.300] [0.840, 0.979] [0.608, 1.091]

(f) MP pilot 0.666 3.578 4.107 0.879 0.855
[0.387, 0.873] [2.100, 5.500] [2.700, 5.600] [0.653, 0.969] [0.605, 1.063]

(g) MP pen 0.542 2.296 3.330 0.862 0.806
[0.280, 0.826] [0.400, 4.800] [1.300, 5.600] [0.625, 0.965] [0.506, 1.093]

(h) Origin 1.007 5.292 – 0.980 –
[0.918, 1.114] [3.700, 7.300] – [0.950, 0.999] –

(i) None 1.000 5.089 – 1.000 –
(benchmark) [1.000, 1.000] [3.600, 6.900] – [1.000, 1.000] –

(i’)  None-reg 0.948 4.900 – 0.980 –
[0.775, 1.012] [3.200, 6.700] – [0.880, 1.034] –

Notes: For each stratification, I report summary statistics across all papers and models of (i) the ratio between 
the MSE under the particular stratification and the MSE under no stratification, (ii) the size of testing (12) for   
θ 0   = θ  at the 5 percent level, in percentage, and (iii) the ratio between the average standard error under the par-
ticular stratification and the average standard error under no stratification. The tests used in this table are as fol-
lows: for  matched-pair designs, the adjusted  t -test with the variance estimator in (14) (adj) and the test in Imbens 
and Rubin (2015) (MPt); for matched sets of four, the adjusted  t -test with the variance estimator in (S.50) in 
online Appendix C.7 (adj4); for the original stratifications, the test in equation (23) of Bugni, Canay, and Shaikh 
(2018); for no stratification, the  two-sample  t -test; for the  regression-adjusted estimator, the  t -test with White’s 
 heteroskedasticity-robust standard error. For each metric, I show the average and   [min, max]   across all papers and 
models. Rows are labeled according to the stratifications. Columns are labeled according to the metrics. For size and 
standard errors, the second column corresponds to MPt for  matched-pair designs and the first column corresponds 
to the other tests. The definitions of the stratifications can be found in the main text.
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according to multiple covariates but tiny when I match only according to the base-
line outcome.

Fifth, does the best pairing method based on a small pilot dominate pairing 
according to  X ? In other words, what is the value of having a small pilot? First, 
note the MSE under MP pen is 19 percent smaller than that under MP pilot, so the 
penalized  matched-pair design indeed has better precision than the naïve  plug-in 
procedure. Meanwhile, the MSE under MP pen is almost the same as that under  
MP X, and even in the most favorable case, it is only about 8 percent smaller. 
Therefore, the return for a small pilot in terms of the MSE is negligible.

I also study the performance of  regression-adjusted estimators in stratifications 
with one stratum ( none-reg). With one stratum, the  regression-adjusted estimator 
usually has slightly smaller MSEs than the  difference-in-means estimator. In almost 
all cases, however, the MSE is larger than those under all methods with matched 
pairs or matched sets of four, regardless of whether all or only a subset of the covari-
ates in the regression adjustment are used in the matching. Online Appendix D 
contains the results for the  regression-adjusted estimator in Lin (2013), which addi-
tionally includes the interactions of treatment status and covariates. The results are 
qualitatively similar to those for  none-reg. Therefore, most of the gains in precision 
from matching according to the covariates cannot be retrieved by controlling for the 
same covariates via  ex post regression adjustment.

B. Inference Methods

Next, I discuss the properties of the inference methods. I start with the size of the 
tests. For matched pairs, note both the adjusted  t -test and the “matched pairs”  t -test 
control size well across all papers and models. When I pair units according to the 
baseline outcome (MP base), the size of the adjusted  t -test is almost always close to 5 
percent. The size of the “matched pairs”  t -test is also close to 5 percent. The underre-
jection phenomenon for the “matched pairs”  t -test in Remark 6 is very mild, reflecting 
the treatment effects heterogeneity is not very large. Several relatively noticeable cases 
include, for model 2 of paper 5, the size of the “matched pairs”  t -test is 3.9 percent 
but the size of the adjusted  t -test is 5.4 percent; for model 3 of paper 5, the size of the 
“matched pairs”  t -test is 2.8 percent but the size of the adjusted  t -test is 3.2 percent.

When I pair units according to multiple covariates (MP X, MP X2, and MP pen), 
the “matched pairs”  t -test is still conservative except in model 1, for the same reason 
as mentioned in Remark 6. At the same time, the adjusted  t -test also becomes con-
servative—its size is often smaller than 5 percent. The reason is that the asymptotic 
results in this paper rely on the assumption that units are “close,” in the sense that 
a suitable normalization of the sum of the distances between the covariates within 
each pair is close to zero. When pairing according to multiple covariates, however, 
the procedures suffer from the curse of dimensionality, so the units paired together 
are not close enough in terms of their covariates. Therefore, the asymptotic results 
do not approximate the  finite-sample distribution of    θ ˆ   n    very well, and my variance 
estimator does not approximate the actual variance of    θ ˆ   n    very well.

When matching according to multiple covariates, the conservativeness of the 
tests is somewhat alleviated by matching units into sets of four instead of pairs. 
The size of the test under MS X is close to 5 percent even when the size of the test 
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under MP X is much smaller than 5 percent. On the other hand, such a difference 
is virtually nonexistent when I match only according to the baseline outcome—the 
size of the test under MP base and that under MS base are both close to 5 percent. 
Our current asymptotic framework cannot explain the difference in size because 
the variance estimators for both MP and MS methods are consistent for the limiting 
variance. The exact reason for the difference is an interesting topic for future work.

I now turn to the standard errors. The findings are mostly similar to those for the 
MSEs, though with some important exceptions. The standard error under MP base is 
10 percent smaller on average and 34 percent smaller in some cases than that under 
origin. At the same time, although the MSE under MP X is smaller than that under 
MS X, the standard error of MP X is larger than that under MS X. In fact, the stan-
dard error under MP X is about the same as that under MP base, and the standard 
error under MP X2 is often larger than that under MP base. Therefore, although 
pairing according to multiple covariates is desirable for the MSE, it is often not the 
best choice for inference, because the standard error is too large and the size of the 
test could be strictly smaller than the nominal level. By matching units into sets of 
four instead of pairs according to the same set of covariates, researchers could lower 
the standard error and bring the size close to the nominal level. Note, however, that 
the MSE will increase, as discussed in Section VA.

I emphasize the validity of my tests relies on the assumptions on the sam-
pling framework. In this paper, I assume units are drawn from a superpopulation, 
and the potential outcomes and the covariates are random. De Chaisemartin and 
 Ramirez-Cuellar (2021), on the other hand, study a  finite-population setting in 
which the potential outcomes and the covariates are fixed. Such a setting is partic-
ularly relevant if we have a convenience sample instead of a random sample drawn 
from a large population. De  Chaisemartin and  Ramirez-Cuellar (2021) show in 
these settings that if the number of pairs is small, then the tests in my paper and Bai, 
Romano, and Shaikh (2021) may not control size, and the “matched pairs”  t -test in 
Imbens and Rubin (2015) could become preferable.

C. Multiple Outcomes

Finally, I consider settings with multiple outcomes. I take the example of Abel 
et al. (2019), where a primary outcome, a secondary outcome, and the baseline out-
comes of both are available. The paper studies  job-searching behaviors. The primary 
outcome is the search hours and the secondary outcome is the number of applica-
tions sent. I study the estimation of the ATE of the secondary outcome. The missing 
potential outcomes are imputed as in Model 1, assuming the treatment effect is zero 
for everyone, and Model 3, using the nearest neighbor in terms of the baseline value 
of the secondary outcome. I consider the following stratifications.

  MP 2: matched pairs according to the baseline value of the secondary 
outcome.

  MS 2: matched sets of four according to the baseline value of the secondary 
outcome.
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  MP 1: matched pairs according to the baseline value of the primary outcome.

  MS 1: matched sets of four according to the baseline value of the primary 
outcome.

  MP 1+2: matched pairs to minimize the sum of the squared Mahalanobis 
distances in (8) of the baseline values of both outcomes.

  MS 1+2: matched sets of four to minimize the sum of the squared Mahalanobis 
distances of the baseline values of both outcomes.

  None: no stratification, meaning all units are in one stratum and exactly half 
are treated.

In light of the results in Section VA, I only consider the adjusted  t -tests. For each 
stratification, I calculate the MSE, the size of testing (12) with   θ 0   = θ , and the aver-
age standard error. The results are displayed in Table 3. Rows are labeled according 
to the stratifications. As expected, because the secondary outcome is of interest, for 
both models, stratifying on the baseline value of the secondary outcome produces 
smaller MSEs than stratifying on the baseline value of the primary outcome. For 
both models, the MSEs when stratifying on the baseline value of the primary out-
come are close to the MSEs with one stratum, reflecting that the baseline value of the 
primary outcome is a poor predictor of the secondary outcome. The smallest MSE is 
attained by pairing according to the baseline values of both outcomes, and the sec-
ond smallest MSE is attained by matching units into sets of four according to both 
baseline outcomes. In all models, the size of the test is close to the nominal level. 
The test under MP 1+2 slightly underrejects for the same reason as in Section VB, 
although the problem is mild because I only match on two variables. The standard 
errors are ranked in the same way as the MSEs except for that of MP 1+2. In both 
models, MS 1+2 produces the smallest standard errors across all methods.

VI. Discussion and Recommendations for Empirical Practice

Based on the theoretical results, in settings with large pilots, I recommend 
researchers to pair units according to the estimated index function from nonpara-
metric regressions. If the conditional ATEs are homogeneous and researchers have 
access to a large observational dataset from the same population as that of the main 
experiment, then I recommend pairing according to predicted values from nonpara-
metric regressions of the outcome on the covariates in the observational dataset. In 
what follows, I focus on settings with small or no pilots because these are the most 
common settings in practice.

A simple approach that researchers can take, assuming there is only one primary 
outcome of interest and its baseline value is available, is to pair units according to 
the baseline outcome. Indeed, if the baseline outcome is the only available covariate 
and the index function is monotonic in it, then my theoretical results show pairing 
units according to the baseline outcome is optimal at any sample size. The sim-
ulation results in Section V also show pairing according to the baseline outcome 
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improves upon the  status quo methods in terms of both the MSE and the standard 
error of the  difference-in-means estimator. Further, this approach has the advantage 
of simplicity.

When multiple covariates are available, an attractive alternative is to match units 
into pairs or sets of four according to the baseline outcome and other covariates. 
Unless the number of covariates is very small, I recommend matched sets of four 
over pairs because the standard error is usually smaller with matched sets of four. In 
my simulation study, when I use the baseline outcome together with all the covari-
ates that the authors control for in their regressions, matching units into sets of four 
leads to smaller MSEs and standard errors than pairing on the baseline outcome 
alone. Note that the good performance of this design could be due to the fact that 
the authors selected the covariates with the best predictive power  ex post, something 
that is not feasible at the time of randomization. Nevertheless, forming sets of four 
according to the baseline outcome and other covariates is an attractive alternative to 
pairing according to the baseline outcome alone.

In my simulation study, when multiple outcomes are of interest, pairing on one of 
them may not improve the MSE of the other outcomes. In those settings, researchers 
could consider matching units into sets of four to minimize the sum of the squared 
Mahalanobis distances of the baseline values of all outcomes of interest and perhaps 
some additional covariates.

A further question is whether pilot experiments are worth running for the sole 
purpose of improving the precision for estimating the ATE. My simulation results 
only show minor gains in statistical precision when using  pilot-based stratifications 
instead of matching directly on the covariates. Therefore, although pilot experiments 
are essential for other aspects of the design of the main experiment, they are not as 
helpful in improving the precision of the estimator for the ATE.

Another natural question is whether one can retrieve the gains in precision from 
matched pairs or sets of four units by controlling for the same set of covariates 

Table 3—MSEs, Size, and Standard Errors for Estimating the ATE of the Secondary Outcome  
in Abel et al. (2019)

Model 1 Model 3
 θ = 0  θ = 0.4449 

MSE
(ratio versus 

none)
Size

(percent)

SE
(ratio versus 

none)

MSE
(ratio versus 

none)
Size

(percent)

SE
(ratio versus 

none)
MP 2 0.760 5.9 0.835 0.645 4.7 0.799
MS 2 0.756 6.0 0.835 0.689 5.8 0.799
MP 1 0.988 4.3 0.980 1.010 4.4 0.986
MS 1 1.117 6.6 0.980 1.070 5.7 0.987
MP 1+2 0.558 4.2 0.769 0.568 4.0 0.783
MS 1+2 0.615 4.9 0.760 0.598 4.3 0.777

None 1.000 4.5 1.000 1.000 4.7 1.000

Notes: For each stratification, I report (i) the MSE, (ii) the size of testing (12) for   θ 0   = θ  at the 5 percent level, in 
percentage, and (iii) the average standard error. The parameter of interest is the ATE of the secondary outcome. The 
tests used in this table are as follows: for  matched-pair designs, the adjusted  t -test with the variance estimator in 
(14) (adj); for matched sets of four, the adjusted  t -test with the variance estimator in (S.50) of the online Appendix 
(adj4). Rows are labeled according to stratifications. Columns are labeled according to the models and metrics. I 
display the value of  θ  for each model. The definitions of the stratifications can be found in the main text.
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through  ex post regression adjustment. Our simulation results show the answer is 
negative; although with one stratum, regression adjustment slightly lowers the MSE 
and the standard error relative to the unadjusted  difference-in-means estimator. I fur-
ther note the  difference-in-means is unbiased for the ATE in finite sample under all 
stratifications considered in this paper, while the  regression-adjusted estimators are 
only consistent for the ATE asymptotically. A very interesting direction for future 
work is to combine regression adjustment with stratifications defined by matched 
pairs or matched sets of four units.

For inference, researchers can use the test with the variance estimator in (14). 
They can also use the test in Theorem 10.1 of Imbens and Rubin (2015), which 
is valid albeit sometimes conservative. Finally, I emphasize that my framework 
assumes units are drawn from a superpopulation and the potential outcomes and the 
covariates are random. If we have a convenience sample instead of a random sample 
drawn from a large population, and the sample size is small, then de Chaisemartin 
and  Ramirez-Cuellar (2021) show the tests in this paper and Bai, Romano, and 
Shaikh (2021) may not control size, and the test in Imbens and Rubin (2015) could 
become preferable.
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