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ABSTRACT
This article studies inference for the average treatment effect in randomized controlled trials where treat-
ment status is determined according to a “matched pairs”design. By a “matched pairs”design, we mean that
units are sampled iid from the population of interest, paired according to observed, baseline covariates and
finally, within each pair, one unit is selected at random for treatment. This type of design is used routinely
throughout the sciences, but fundamental questions about its implications for inference about the average
treatment effect remain. The main requirement underlying our analysis is that pairs are formed so that units
within pairs are suitably “close” in terms of the baseline covariates, and we develop novel results to ensure
that pairs are formed in a way that satisfies this condition. Under this assumption, we show that, for the
problem of testing the null hypothesis that the average treatment effect equals a prespecified value in such
settings, the commonly used two-sample t-test and “matched pairs” t-test are conservative in the sense
that these tests have limiting rejection probability under the null hypothesis no greater than and typically
strictly less than the nominal level. We show, however, that a simple adjustment to the standard errors of
these tests leads to a test that is asymptotically exact in the sense that its limiting rejection probability
under the null hypothesis equals the nominal level. We also study the behavior of randomization tests that
arise naturally in these types of settings. When implemented appropriately, we show that this approach
also leads to a test that is asymptotically exact in the sense described previously, but additionally has finite-
sample rejection probability no greater than the nominal level for certain distributions satisfying the null
hypothesis. A simulation study and empirical application confirm the practical relevance of our theoretical
results.
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1. Introduction

This article studies inference for the average treatment effect in
randomized controlled trials where treatment status is deter-
mined according to a “matched pairs” design. By a “matched
pairs” design, we mean that units are sampled iid from the
population of interest, paired according to observed, baseline
covariates and finally, within each pair, one unit is selected
at random for treatment. This method is used routinely in
all parts of the sciences. Indeed, commands to facilitate its
implementation are included in popular software packages,
such as sampsi in Stata. References to a variety of specific
examples can be found, for instance, in the following surveys
of various field experiments: Riach and Rich (2002), List and
Rasul (2011), White (2013), Crépon et al. (2015), Bertrand
and Duflo (2017), and Heard et al. (2017). See also Bruhn
and McKenzie (2009), who, based on a survey of selected
development economists, reported that 56% of researchers have
used such a design at some point. Despite the widespread
use of “matched pairs” designs, fundamental questions about
its implications for inference about the average treatment
effect remain. The main requirement underlying our analysis
is that pairs are formed so that units within pairs are suit-
ably “close” in terms of the baseline covariates. We develop
novel results to ensure that pairs are formed in a way that

CONTACT Azeem M. Shaikh amshaikh@uchicago.edu Department of Economics, University of Chicago, Chicago, IL 60637.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

satisfies this condition. See, in particular, Theorems 4.1–4.3.
Under this assumption, we derive a variety of results per-
taining to the problem of testing the null hypothesis that the
average treatment effect equals a prespecified value in such
settings.

We first study the behavior of the two-sample t-test and
“matched pairs” t-test, which are both used routinely in the
analysis of this type of data. Several specific references are
provided in Sections 3.1 and 3.2. Our first pair of results estab-
lish that these commonly used tests are conservative in the
sense that these tests have limiting rejection probability under
the null hypothesis no greater than and typically strictly less
than the nominal level. For each of these tests, we addition-
ally provide a characterization of when the limiting rejection
probability under the null hypothesis is in fact strictly less
than the nominal level. In a simulation study, we find that
the rejection probability of these tests may in fact be dra-
matically less than the nominal level, and, as a result, they
may have very poor power when compared to other tests.
Intuitively, the conservative feature of these tests is a con-
sequence of the dependence in treatment status across units
and between treatment status and baseline covariates resulting
from the “matched pairs” design. We show, however, that a
simple adjustment to the usual standard error of these tests
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leads to a test that is asymptotically exact in the sense that
its limiting rejection probability under the null hypothesis
equals the nominal level. We refer to this test as the “adjusted”
t-test.

Next, we study the behavior of some randomization tests that
arise naturally in these types of settings. More specifically, we
study randomization tests based on the idea of permuting only
treatment status for units within pairs. When implemented with
a suitable choice of test statistic, specifically the test statistic
employed in the aforementioned “adjusted” t-test, we show
that this approach also leads to a test that is asymptotically
exact in the sense described previously. We emphasize, however,
that this result relies heavily upon the choice of test statistic.
Indeed, as explained further in Remark 3.16, when implemented
with other choices of test statistics, randomization tests may
behave in large samples like the “matched pairs” t-test described
above. On the other hand, regardless of the specific way in
which they are implemented, these tests have the attractive
feature that they have finite-sample rejection probability no
greater than the nominal level for certain distributions satis-
fying the null hypothesis. We highlight these properties in a
simulation study.

The analysis of data from experiments with matched pairs
has received considerable attention recently. Much of this litera-
ture differs from the present article in at least one of two impor-
tant ways: first, the parameter of interest is in many instances
not the average treatment effect, but instead the sample average
treatment effect or the conditional average treatment effect;
second, the sampling scheme differs from ours in that the pairs
of units are sampled rather than the units, which are then
subsequently paired. We emphasize that the subsequent pairing
of the sampled units significantly complicates the analysis in
that pairing may only be approximate in the case of continuous
covariates and also leads to dependence in the pairs themselves,
which must be taken into account, as done in our analysis
below. Indeed, Athey and Imbens (2017) advocated against the
use of matched pair designs due to difficulties with consistent
estimation of the appropriate variance stemming from these
complications, which we overcome in our analysis. Examples
of articles where at least one of these two distinctions are
present include Abadie and Imbens (2008), Imai (2008), Ding
(2017), and Fogarty (2018a, 2018b). Remarks 3.7–3.9 provide
further discussion of some of these important, related con-
tributions. A notable exception to this characterization of the
literature is van der Laan, Balzer, and Petersen (2012), who
considered a more general framework that includes ours as
a special case. By specializing his results to our setting, it is
possible to recover results related to some of ours, especially
those pertaining to the conservativeness of the “matched pairs”
t-test and the possibility of adjusting it to obtain an asymp-
totically exact test. Even for these results, we note that there
are important distinctions between our results and theirs. Fur-
thermore, there is no analysis of the usual two-sample t-test or
randomization tests of any kind. We elaborate on these points in
Remark 3.12.

The remainder of the article is organized as follows. In
Section 2, we describe our setup and notation. In particu-
lar, there we describe the precise sense in which we require
that units in each pair are “close” in terms of their baseline

covariates. Our main results concerning the two-sample t-test,
the “matched pairs” t-test, “adjusted” t-test, and randomiza-
tion tests are contained in Section 3. In Section 4, we develop
some results that ensure that units in each pair are suitably
“close” in terms of their baseline covariates. In Section 5, we
examine the finite-sample behavior of these tests via a small
simulation study. In Section 6, we provide a brief empirical
illustration of our proposed tests using data from an experiment
replicating one of the arms in DellaVigna and Pope (2018).
Finally, we conclude in Section 7 with some recommendations
for empirical practice guided by both our theoretical results
and our simulation study. As explained further in that section,
for the testing problem considered here, we do not recom-
mend the use of the two-sample t-test or “matched pairs” t-test
because they are conservative in the sense described above; we
instead encourage the use of the “adjusted” t-test or random-
ization tests that employ the same test statistic because they
are asymptotically exact, and, as a result, considerably more
powerful. Proofs of all results are provided in the Supplemental
Appendix.

2. Setup and Notation

Let Yi ∈ R denote the (observed) outcome of interest for the
ith unit, Di ∈ {0, 1} be an indicator for whether the ith unit
is treated, and Xi ∈ Rk denote observed, baseline covariates
for the ith unit. Further denote by Yi(1) the potential outcome
of the ith unit if treated and by Yi(0) the potential outcome of
the ith unit if not treated. As usual, the (observed) outcome
and potential outcomes are related to treatment status by the
relationship

Yi = Yi(1)Di + Yi(0)(1 − Di) . (1)

For a random variable indexed by i, Ai, it will be useful to
denote by A(n) the random vector (A1, . . . , A2n). Denote by
Pn the distribution of the observed data Z(n), where Zi =
(Yi, Di, Xi), and by Qn the distribution of W(n), where Wi =
(Yi(1), Yi(0), Xi). Note that Pn is jointly determined by (1),
Qn, and the mechanism for determining treatment assignment.
We assume throughout that W(n) consists of 2n iid observa-
tions, that is, Qn = Q2n, where Q is the marginal distri-
bution of Wi. We therefore state our assumptions below in
terms of assumptions on Q and the mechanism for deter-
mining treatment assignment. Indeed, we will not make ref-
erence to Pn in the sequel and all operations are understood
to be under Q and the mechanism for determining treatment
assignment.

Our object of interest is the average effect of the treatment on
the outcome of interest, which may be expressed in terms of this
notation as

�(Q) = E[Yi(1) − Yi(0)] . (2)

For a prespecified choice of �0, the testing problem of interest
is

H0 : �(Q) = �0 versus H1 : �(Q) �= �0 (3)

at level α ∈ (0, 1).
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We now describe our assumptions on Q. We restrict Q to
satisfy the following mild requirement:

Assumption 2.1. The distribution Q is such that

(a) 0 < E[var[Yi(d)|Xi]] for d ∈ {0, 1}.
(b) E[Y2

i (d)] < ∞ for d ∈ {0, 1}.
(c) E[Yi(d)|Xi = x] and E[Y2

i (d)|Xi = x] are Lipschitz for d ∈
{0, 1}.

Assumptions 2.1(a) and (b) are mild restrictions imposed,
respectively, to rule out degenerate situations and to permit the
application of suitable laws of large numbers and central limit
theorems. See, in particular, Lemma S.1.3 in the Supplemental
Appendix for a novel law of large numbers for independent
and nonidentically distributed random variables that is useful in
establishing our results. Assumption 2.1(c), on the other hand, is
a smoothness requirement that ensures that units that are “close”
in terms of their baseline covariates are suitably comparable.
Such smoothness requirements have been employed in estab-
lishing some types of optimality of “matched pairs” designs. See,
in particular, Kallus (2018) and Bai (2020).

Next, we describe our assumptions on the mechanism deter-
mining treatment assignment. To describe these assumptions
more formally, we require some further notation to define the
relevant pairs of units. The n pairs may be represented by the
sets

{π(2j − 1), π(2j)} for j = 1, . . . , n ,

where π = πn(X(n)) is a permutation of 2n elements. Because
of its possible dependence on X(n), π encompasses a broad
variety of different ways of pairing the 2n units according to the
observed, baseline covariates X(n). Given such a π , we assume
that treatment status is assigned as described in the following
assumption:

Assumption 2.2. Treatment status is assigned so that
(Y(n)(1), Y(n)(0)) ⊥⊥ D(n)

∣∣X(n) and, conditional on
X(n), (Dπ(2j−1), Dπ(2j)), j = 1, . . . , n are iid and each uniformly
distributed over the values in {(0, 1), (1, 0)}.

Our analysis will require some discipline on the way in which
the pairs are formed. In particular, we will require that the units
in each pair are “close” in terms of their baseline covariates in
the sense described by the following assumption:

Assumption 2.3. The pairs used in determining treatment status
satisfy

1
n

∑
1≤j≤n

|Xπ(2j) − Xπ(2j−1)|r P→ 0

for r = 1 and r = 2.

It will at times be convenient to require further that units in
consecutive pairs are also “close” in terms of their baseline
covariates. One may view this requirement, which is formalized
in the following assumption, as “pairing the pairs” so that they
are “close” in terms of their baseline covariates.

Assumption 2.4. The pairs used in determining treatment status
satisfy

1
n

∑
1≤j≤� n

2 	
|Xπ(4j−k) − Xπ(4j−�)|2 P→ 0

for any k ∈ {2, 3} and � ∈ {0, 1}.

In Section 4, we provide results to facilitate constructing pairs
satisfying Assumptions 2.3 and 2.4 under weak assumptions on
Q. We emphasize, however, that Assumption 2.4, in contrast
to Assumptions 2.1–2.3, will not be required for many of our
results. Furthermore, given pairs satisfying Assumption 2.3, it
will frequently be possible to “reorder” them so that Assump-
tion 2.4 is satisfied. See Theorem 4.3 for further details.

Remark 2.1. At the expense of some additional notation, it is
straightforward to allow π to depend further on a uniform ran-
dom variable U that is independent of (Y(n)(1), Y(n)(0), X(n)),
but we do not pursue this generalization here.

Remark 2.2. The treatment assignment scheme described in
this section is an example of what is termed in some parts
of the literature as a covariate-adaptive randomization scheme,
in which treatment status is assigned so as to “balance” units
assigned to treatment and the units assigned to control in terms
of their baseline covariates. For a review of these types of treat-
ment assignment schemes focused on their use in clinical trials,
see Rosenberger and Lachin (2015). In some such schemes,
units are sampled iid from the population of interest, stratified
into a finite number of strata according to observed, baseline
covariates, and finally, within each stratum, treatment status is
assigned so as to achieve “balance” within each stratum. For
instance, within each stratum, a researcher may assign (uni-
formly) at random half of the units to treatment and the remain-
der to control. Bugni, Canay, and Shaikh (2018, 2019) developed
a variety of results pertaining to these ways of assigning treat-
ment status, but their analysis relies heavily upon the require-
ment that the units are stratified using the baseline covariates
into only a finite number of strata. As a result, their frame-
work cannot accommodate “matched pairs” designs, where the
number of strata is equal to the number of pairs and therefore
proportional to the sample size.

3. Main Results

3.1. Two-Sample t-Test

In this section, we consider using the two-sample t-test to test
(3) at level α ∈ (0, 1). To define this test, for d ∈ {0, 1}, define

μ̂n(d) = 1
n

∑
1≤i≤2n:Di=d

Yi, (4)

σ̂ 2
n (d) = 1

n
∑

1≤i≤2n:Di=d
(Yi − μ̂n(d))2, (5)

and let

�̂n = μ̂n(1) − μ̂n(0) . (6)
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The two-sample t-test is given by

φt−test
n (Z(n)) = I{|Tt−test

n (Z(n))| > z1− α
2
} , (7)

where

Tt−test
n (Z(n)) =

√
n(�̂n − �0)√

σ̂ 2
n (1) + σ̂ 2

n (0)
(8)

and z1− α
2

is the 1 − α
2 quantile of the standard normal distribu-

tion. While its properties are far from clear in our setting, this
classical test is used routinely in the analysis of such data. See,
for example, Riach and Rich (2002), Gelman and Hill (2006,
p. 174), Duflo, Glennerster, and Kremer (2007), Bertrand and
Duflo (2017), and the references therein. See also Imai, King,
and Nall (2009) for the use of an analogous test in a setting with
cluster-level treatment assignment.

The following theorem establishes the asymptotic behavior of
the two-sample t-statistic defined in (8) and, as a consequence,
the two-sample t-test defined in (7). In particular, the theorem
shows that the limiting rejection probability of the two-sample
t-test under the null hypothesis is generally strictly less than the
nominal level.

Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treat-
ment assignment mechanism satisfies Assumptions 2.2 and 2.3.
Then,

√
n(�̂n − �(Q))√
σ̂ 2

n (1) + σ̂ 2
n (0)

d→ N(0, ς2
t−test) , (9)

where

ς2
t−test = 1 − 1

2

E[((E[Yi(1)|Xi] − E[Yi(1)])
+(E[Yi(0)|Xi] − E[Yi(0)]))2]

var[Yi(1)] + var[Yi(0)] .

Thus, for the problem of testing (3) at level α ∈
(0, 1), φt−test

n (Z(n)) defined in (7) satisfies

lim
n→∞ E[φt−test

n (Z(n))] = P{ςt−test |G| > z1− α
2
} ≤ α , (10)

where G ∼ N(0, 1), whenever Q additionally satisfies the null
hypothesis, that is, �(Q) = �0. Furthermore, the inequality in
(10) is strict unless

E[Yi(1) + Yi(0)] = E[Yi(1) + Yi(0)|Xi] (11)

with probability one under Q.

Remark 3.1. Theorem 3.1 shows that the limiting rejection
probability of the two-sample t-test under the null hypothesis is
strictly less than the nominal level unless the baseline covariates
are irrelevant for potential outcomes in the sense described by
(11). We note that the conservativeness of the two-sample t-
test is mentioned in Athey and Imbens (2017), but without
any formal results. The magnitude of the difference between
the limiting rejection probability and the nominal level, how-
ever, will depend further on Q through the value of ς2

t-test. In
our simulation study in Section 5, we find that the rejection
probability can be severely less than the nominal level and
that this difference translates into significant power losses when
compared with tests studied below that are asymptotically exact
in the sense that they have limiting rejection probability under
the null hypothesis equal to the nominal level.

Remark 3.2. In our definition of the two-sample t-test above,
we have used the unpooled estimator of the variance rather than
the pooled estimator of the variance. Using Lemma S.1.5 in the
Supplemental Appendix, it is straightforward to show that the
pooled estimator of the variance tends in probability to

var[Yi(1)] + var[Yi(0)]
2

+ (E[Yi(1)] − E[Yi(0)])2

4
.

From this and Lemma S.1.4 in the Supplemental Appendix, it is
possible to deduce that with this choice of an estimator of the
variance the test may even have limiting rejection probability
under the null hypothesis that strictly exceeds the nominal level.

3.2. “Matched Pairs” t-Test

Instead of the two-sample t-test studied in the preceding sec-
tion, it is often recommended to use a “matched pairs” t-test
when analyzing such data, which treats the differences of the
outcomes within a pair as the observations. This test is also
sometimes referred to as the “paired difference-of-means” test.
For some examples of its use, see Athey and Imbens (2017), Hsu
and Lachenbruch (2007), and Armitage, Berry, and Matthews
(2008). Formally, this test is given by

φ
paired
n (Z(n)) = I{|Tpaired

n (Z(n))| > z1− α
2
} , (12)

where

Tpaired
n (Z(n)) =

√
n(�̂n − �0)√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − �̂2

n

(13)

and, as before, z1− α
2

is the 1− α
2 quantile of the standard normal

distribution. Again, despite its widespread use, the properties of
this test are not transparent in our setting.

The following theorem describes the asymptotic behavior
of the “matched pairs” t-statistic defined in (13), and, as a
consequence, the “matched pairs” t-test defined in (12). The
theorem shows, in particular, that the behavior of the “matched
pairs” t-test is qualitatively similar to that of the two-sample t-
test studied in the preceding section.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treat-
ment assignment mechanism satisfies Assumptions 2.2 and 2.3.
Then,

√
n(�̂n − �(Q))√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − �̂2

n

d→ N(0, ς2
paired) , (14)

where

ς2
paired = 1 − 1

2

E[((E[Yi(1)|Xi] − E[Yi(1)])
−(E[Yi(0)|Xi] − E[Yi(0)]))2](

E[var[Yi(1)|Xi]] + E[var[Yi(0)|Xi]]
+E[((E[Yi(1)|Xi] − E[Yi(1)])

−(E[Yi(0)|Xi] − E[Yi(0)]))2]
)

.

Thus, for the problem of testing (3) at level α ∈
(0, 1), φ

paired
n (Z(n)) defined in (12) satisfies

lim
n→∞ E[φpaired

n (Z(n))] = P{ςpaired |G| > z1− α
2
} ≤ α , (15)
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where G ∼ N(0, 1), whenever Q additionally satisfies the null
hypothesis, that is, �(Q) = �0. Furthermore, the inequality in
(15) is strict unless

E[Yi(1) − Yi(0)] = E[Yi(1) − Yi(0)|Xi] (16)

with probability one under Q.

Remark 3.3. While Theorem 3.2 is qualitatively similar to Theo-
rem 3.1, it is worth emphasizing the difference between (11) and
(16). Both conditions determine a sense in which the baseline
covariates are irrelevant for potential outcomes, but the latter
condition holds, in particular, whenever the treatment effect
Yi(1) − Yi(0) is constant.

Remark 3.4. The test statistic in (13) is particularly convenient
for the purposes of constructing a confidence interval for �(Q),
but we note that it is possible to studentize differently if one
is only interested in testing (3). In particular, the result in (15)
continues to hold for the test formed by replacing the �̂n in the
denominator on the right-hand side of (13) with �0. On the
other hand, since �̂n solves

min
�

1
n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1) − �)2 ,

doing so would lead to a test that is less powerful than the one
considered here.

Remark 3.5. In the context of observational studies under an
unconfoundedness assumption, Abadie and Imbens (2012) also
analyzed the left-hand side of (14); see, in particular, Theorem
1 and equation (5) in their article when M = 1. In their setting,
this quantity converges in distribution to a standard normal
distribution. The difference between their result and ours above
seems striking when one observes that their framework allows
each treated unit to be “matched” to a control unit in a way
that satisfies our Assumption 2.3. We emphasize, however, that,
in contrast to the setting considered here, treatment status in
their framework is iid. This important difference significantly
complicates the analysis and explains the diverging results for
the same quantities.

Remark 3.6. The literature has also at times advocated estima-
tion of �(Q) via estimation by ordinary least squares of the
coefficient on Di in

Yi = βDi +
∑

1≤j≤n
λjI{i ∈ {π(2j), π(2j − 1)}} + εi . (17)

See, for example, Duflo, Glennerster, and Kremer (2007) and
Glennerster and Takavarasha (2013, p. 363) as well as Crépon
et al. (2015), who estimate �(Q) in the same way, but in a
setting with cluster-level treatment assignment. In our setting, it
is straightforward to see that the ordinary least squares estimator
of β in (17) equals �̂n. It is also possible to show that the usual
heteroscedasticity-consistent estimator variance equals

1
n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 − �̂2

n .

Hence, the resulting test is identical to the “matched pairs” t-test
studied in this section.

Remark 3.7. In an asymptotic framework that differs from
ours in that pairs of units are sampled rather than the units
themselves, Fogarty (2018a) considered the use of the “matched
pairs” t-test considered here for inference about the sample
average treatment effect as well as the average treatment effect.
For inference about the average treatment effect, it is clear that in
this different asymptotic framework, the “matched pairs” t-test
would in fact be asymptotically exact. In the case of the sample
average treatment effect, it is generally conservative. Fogarty
(2018a) therefore further suggested some improved tests for the
case of the sample average treatment effect, but he notes that
those improvements do not carry over to the average treatment
effect. See Section 5 of Fogarty (2018a) for further discussion.

Remark 3.8. In an asymptotic framework that again differs from
ours in that pairs of units are sampled rather than the units
themselves, Fogarty (2018b) considered various “regression-
assisted” estimators for different treatment effect parameters.
For the average treatment effect, he considers, instead of �̂n,
the estimator of �(Q) given by the ordinary least squares
estimator of the intercept parameter in a linear regression of
(Yπ(2j)−Yπ(2j−1))(Dπ(2j)−Dπ(2j−1)) on a constant and (Xπ(2j)−
Xπ(2j−1))(Dπ(2j) − Dπ(2j−1)). Denote this estimator by α̂n and
by β̂n the corresponding estimator of the slope parameters. In
Section S.1.1 of the Supplemental Appendix, we show that quite
generally

√
n(α̂n − �(Q)) = √

n(�̂n − �(Q)) + oP(1) . (18)

In this sense, there is no benefit to using such estimators instead
of �̂n in our asymptotic framework. Note, however, that this
does not preclude the possibility of improvements from using
“regression-assisted” estimators that make use of covariates that
are not included in Xi.

3.3. “Adjusted” t-Test

The proofs of Theorems 3.1 and 3.2 in the Supplemental
Appendix rely upon Lemma S.1.4, which establishes that

√
n(�̂n − �(Q))

d→ N(0, ν2) ,

where

ν2 = var[Yi(1)] + var[Yi(0)] − 1
2

E
[(

(E[Yi(1)|Xi] − E[Yi(1)])
+ (E[Yi(0)|Xi] − E[Yi(0)]) )2

]
. (19)

Using this observation, it is possible to provide an adjustment
to these tests that leads to a test that is asymptotically exact in
the sense that its limiting rejection probability under the null
hypothesis equals the nominal level by providing a consistent
estimator of (19). As discussed further in Remark 3.11, there
exist multiple consistent estimators of (19), but a convenient one
for our purposes is given by

ν̂2
n = τ̂ 2

n − 1
2
(λ̂2

n + �̂2
n) , (20)
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where

τ̂ 2
n = 1

n
∑

1≤j≤n
(Yπ(2j) − Yπ(2j−1))

2 (21)

λ̂2
n = 2

n
∑

1≤j≤� n
2 	

(
(Yπ(4j−3) − Yπ(4j−2))(Yπ(4j−1) − Yπ(4j))

×(Dπ(4j−3) − Dπ(4j−2))(Dπ(4j−1) − Dπ(4j))
)

. (22)

To provide some intuition for the form of this estimator, note
that the expression in (19) qualitatively involves two types of
quantities: quantities like E[Yi(1)], which can be consistently
estimated in a straightforward fashion by averaging across pairs
outcomes corresponding to treated observations, as explained in
Lemma S.1.5 in the Supplemental Appendix; and quantities like
E[E[Yi(1)|Xi]E[Yi(0)|Xi]], which are more problematic, but can
be consistently estimated by averaging across “pairs of pairs” the
product of outcomes corresponding to a treated and untreated
observation in adjacent pairs. It is for this reason that the esti-
mator in (20) involves a quantity like (22), which averages across
“pairs of pairs.” The following theorem shows that the “adjusted”
t-test, given by

φ
t−test,adj
n (Z(n)) = I{|Tt−test,adj

n (Z(n))| > z1− α
2
} (23)

with

Tt−test,adj
n (Z(n)) =

√
n(�̂n − �0)

ν̂n
, (24)

satisfies the desired property.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the
treatment assignment mechanism satisfies Assumptions 2.2–
2.4. Then,

√
n(�̂n − �(Q))

ν̂n

d→ N(0, 1) . (25)

Thus, for the problem of testing (3) at level α ∈
(0, 1), φ

t−test,adj
n (Z(n)) defined in (23) satisfies

lim
n→∞ E[φt−test,adj

n (Z(n))] = α , (26)

whenever Q additionally satisfies the null hypothesis, that is,
�(Q) = �0.

Remark 3.9. Note that

ν̂2
n = 1

2
(τ̂ 2

n − �̂2
n) + 1

2
ζ̂ 2

n , (27)

where

ζ̂ 2
n = 1

n
∑

1≤j≤� n
2 	

(
(Yπ(4j−3) − Yπ(4j−2))(Dπ(4j−3) − Dπ(4j−2))

− (Yπ(4j−1) − Yπ(4j))(Dπ(4j−1) − Dπ(4j))
)2

.

Since τ̂ 2
n ≥ �̂2

n, this decomposition reveals that ν̂2
n is non-

negative. We note that the quantity ζ̂ 2
n appears in Abadie and

Imbens (2008), who show in an asymptotic framework that
differs from ours that it is consistent for var[�̂n|X(n)] under

Assumptions 2.1(c) and 2.3. They therefore suggest its use for
inference about the conditional average treatment effect. The
decomposition in (27) reveals, however, that using this estimator
of the variance in place of ν̂2

n in (24) would lead to a test that
in our asymptotic framework for inference about the average
treatment effect may even have limiting rejection probability
under the null hypothesis that strictly exceeds the nominal level.

Remark 3.10. While our discussion has focused on two-sided
null hypotheses as described in (3), the convergence in distribu-
tion results described in (9), (14), and (25) have straightforward
implications for other tests, such related tests of one-sided null
hypotheses.

Remark 3.11. As mentioned previously, other consistent estima-
tors of (19) exist. For instance, one may consider the estimator
given by

ν̃2
n = σ̂ 2

n (1) + σ̂ 2
n (0) − 1

2

(
λ̃2

n − (μ̂n(1) + μ̂n(0))2
)

, (28)

where

λ̃2
n = 2

n
∑

1≤j≤� n
2 	

(Yπ(4j−3) + Yπ(4j−2))(Yπ(4j−1) + Yπ(4j)) .

Using arguments similar to those used in establishing Theo-
rem 3.3, it is possible to show that Theorem 3.3 remains true
when ν̂2

n defined in (20) is replaced by ν̃2
n defined in (28). Indeed,

one could use the minimum of multiple consistent estimators of
(19). One could even include in the minimum any estimators
known to converge in probability to something weakly larger,
such as the variance estimators employed in the usual two-
sample t-test and the “matched pairs” t-test.

Remark 3.12. As mentioned previously, van der Laan, Balzer,
and Petersen (2012) considered a more general framework that
includes as a special case the one considered here. When spe-
cialized to our setting, their results also enable one to obtain the
limit in distribution of

√
n(�̂n − �(Q)), though the expression

they provide for the variance of the limiting distribution differs
from ours and, in particular, appears to depend on the sample
size (van der Laan, Balzer, and Petersen 2012, Theorem 3). Using
this result, they analyze the behavior of the “matched pairs” t-
test and find that it should quite generally be conservative in
the sense that it has limiting rejection probability no greater
than the nominal level under the null hypothesis. Their analysis,
however, relies upon higher-level conditions than ours and, as
a consequence, they are unable to articulate the circumstances
under which the “matched pairs” t-test has limiting rejection
probability under the null hypothesis strictly less than the nom-
inal level as succinctly and clearly as in our Theorem 3.2. They
go on to suggest a test like our “adjusted” t-test with limiting
rejection probability under the null hypothesis equal to nominal
level even when these circumstances hold, though no explicit
description or formal results about it are provided. In particular,
the description of their test relies upon a consistent estimator
of the variance of the limiting distribution of

√
n(�̂n − �(Q)),

which in turn depends upon a “super learner” of a reference
distribution that they make use of in their analysis. Finally, these
similarities not withstanding, we emphasize that van der Laan,
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Balzer, and Petersen (2012) provided no analysis of the usual
two-sample t-test or any of the randomization tests considered
below.

3.4. Randomization Tests

In this section, we study the properties of randomization tests
based on the idea of permuting treatment status for units within
pairs. For ease of exposition, it is convenient to describe the test
for the problem of testing (3) with �0 = 0; for the problem
of testing (3) more generally, the construction below may be
applied with Yi replaced with Yi − Di�0. See Remark 3.15 for
further details.

To describe the test formally, it is useful to introduce some
further notation. To this end, denote by Gn the group of all
permutations of 2n elements and by Gn(π) the subgroup that
only permutes elements within the pairs defined by π , that is,

Gn(π) =
{

g ∈ Gn : {π(2j − 1), π(2j)}
= {g(π(2j − 1)), g(π(2j)) for 1 ≤ j ≤ n}

}
.

Define the action of g ∈ Gn(π) on Z(n) as follows:

gZ(n) = {(Yi, Dg(i), Xi) : 1 ≤ i ≤ 2n} ,

that is, g ∈ Gn(π) acts on Z(n) by permuting treatment
assignment. For a given choice of test statistic Tn(Z(n)), the
randomization test is given by

φrand
n (Z(n)) = I{Tn(Z(n)) > R̂−1

n (1 − α)} , (29)

where

R̂n(t) = 1
|Gn(π)|

∑
g∈Gn(π)

I{Tn(gZ(n)) ≤ t} . (30)

Here, R̂−1
n (1−α) is understood to be inf{t ∈ R : R̂n(t) ≥ 1−α}.

We also emphasize that difference choices of Tn(Z(n)) lead to
different randomization tests and some of our results below will
rely upon a particular choice of Tn(Z(n)).

Remark 3.13. In some situations, |Gn(π)| = 2n may be too
large to permit computation of R̂n(t) defined in (30). In such
cases, a stochastic approximation to the test may be used by
replacing Gn(π) with Ĝn = {g1, . . . , gB}, where g1 is the identity
permutation and let g2, . . . , gB are iid Unif(Gn(π)). Theorem 3.4
remains true with such an approximation; Theorem 3.5 also
remains true with such an approximation provided that B → ∞
as n → ∞.

3.4.1. Finite-Sample Results
Before developing the large-sample properties of the random-
ization test given by (29), we present some finite-sample prop-
erties of the test. We show, in particular, that for any choice of
test statistic the randomization test defined in (29) has rejection
probability no greater than the nominal level for the following
more restrictive null hypothesis:

H̃0 : Yi(1)|Xi
d= Yi(0)|Xi . (31)

While the proof of the result follows closely classical arguments
that underlie the finite-sample validity of randomization tests
more generally, it is presented in the Supplemental Appendix
for completeness. Similar results can also be found in Heckman
et al. (2011) and Lee and Shaikh (2014).

Theorem 3.4. Suppose the treatment assignment mechanism
satisfies Assumption 2.2. For the problem of testing (31) at level
α ∈ (0, 1), φrand

n (Z(n)) defined in (29) with any Tn(Z(n)) satisfies

E[φrand
n (Z(n))] ≤ α (32)

whenever Q additionally satisfies the null hypothesis, that is,
Yi(1)|Xi

d= Yi(0)|Xi.

Remark 3.14. By modifying the test defined in (29) so that it
rejects with positive probability when Tn(Z(n)) = ĉrand

n (1−α), it
is possible to ensure that the test has rejection probability exactly
equal to α whenever Q satisfies the null hypothesis, rather than
simply less than or equal to α, as described in (32). See Lehmann
and Romano (2005, chap. 15) for further details.

3.4.2. Large-Sample Properties
In this section, we establish the large-sample validity of the
randomization test given by (29) with a suitable choice of test
statistic for testing (3). In particular, we show that the limiting
rejection probability of the proposed test equals the nominal
level under the null hypothesis.

Theorem 3.5. Suppose Q satisfies Assumption 2.1 and the treat-
ment assignment mechanism satisfies Assumptions 2.2–2.4. Let
Tn(Z(n)) = |Tt−test,adj

n (Z(n))|, where Tt−test,adj
n (Z(n)) is defined

in (24). For such a choice of Tn(Z(n)),

sup
t∈R

∣∣∣R̂n(t) − (�(t) − �(−t))
∣∣∣ P→ 0 , (33)

where �(·) is the standard normal c.d.f. Thus, for the problem
of testing (3) with �0 = 0 at level α ∈ (0, 1), φrand

n (Z(n)) with
such a choice of Tn(Z(n)) satisfies

lim
n→∞ E[φrand

n (Z(n))] = α , (34)

whenever Q additionally satisfies the null hypothesis, that is,
�(Q) = 0.

Remark 3.15. For completeness, we briefly describe the way in
which Theorem 3.5 extends to testing (3) with �0 �= 0 in further
detail. To this end, let Z̃i = (Yi − Di�0, Di, Xi) and define the
action of g ∈ Gn(π) on Z̃(n) as follows:

gZ̃(n) = {(Yi − Di�0, Dg(i), Xi) : 1 ≤ i ≤ 2n} .

Consider the test, φrand
n (Z̃(n)), obtained by replacing Z(n) in the

test described in Theorem 3.5 with Z̃(n). For such a test, we have,
under the assumptions of Theorem 3.5, that

lim
n→∞ E[φrand

n (Z̃(n))] = α

whenever Q additionally satisfies the null hypothesis, that is,
�(Q) = �0.
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Remark 3.16. The conclusion in Theorem 3.5 depends heav-
ily on the choice of test statistic in the definition of (29). To
illustrate this phenomenon, consider the test defined by (29)
with Tn(Z(n)) = |√n�̂n|. Using Lemmas S.1.4 and S.1.8 in
the Supplemental Appendix, it is possible to show that this test
behaves similarly under the null hypothesis to the “matched
pairs” t-test described in Section 3.2. In particular, it has limiting
rejection probability under the null hypothesis no greater than
α and strictly less than α unless (16) holds. A growing literature
suggests that it should be possible to achieve limiting rejection
probability under the null hypothesis equal to α by studentizing
the test statistic using a consistent estimator of (19). See, for
example, Janssen (1997), Chung and Romano (2013, 2016),
DiCiccio and Romano (2017), and Bugni, Canay, and Shaikh
(2018). The problem considered here, however, illustrates that
this need not be sufficient. To see this, consider the test defined
by (29) with Tn(Z(n)) = |√n�̂n|

ν̃n
, where ν̃2

n is defined in (28). It is
possible to show using arguments similar to those used in estab-
lishing Theorem 3.3 that this test also behaves similarly under
the null hypothesis to the “matched pairs” t-test described in
Section 3.2. The problem can be traced to the following peculiar
phenomenon: even though ν̃2

n is consistent for (19), as discussed
in Remark 3.11, ν̃2

n , in contrast to ν̂2
n , is not consistent for the

variance of the distribution to which the randomization distri-
bution of

√
n�̂n converges. See, in particular, Lemmas S.1.8 and

S.1.9 in the Supplemental Appendix.

4. Algorithms for Pairing

In this section, we describe different algorithms for pairing units
so that Assumptions 2.3 and 2.4 are satisfied. For the case where
dim(Xi) = 1, a particularly simple algorithm leads to pairs that
satisfy these assumptions. In particular, we show that to satisfy
Assumptions 2.3 and 2.4 it suffices to pair units simply by first
ordering the units from smallest to largest according to Xi and
then defining pairs according to adjacent units.

Theorem 4.1. Suppose dim(Xi) = 1 and E[X2
i ] < ∞. Let π be

any permutation of 2n elements such that that

Xπ(1) ≤ · · · ≤ Xπ(2n) .

Then, π satisfies Assumptions 2.3 and 2.4.

For the case where dim(Xi) > 1, it is helpful to assume that
supp(Xi) lies in a known, bounded set, which, without loss of
generality, we may assume to be [0, 1]k. Because u2 ≤ u for all
0 ≤ u ≤ 1, it follows that for any permutation π̌ of 2n elements

1
n

∑
1≤j≤n

|Xπ̌(2j−1) − Xπ̌(2j)|2 ≤ 1
n

∑
1≤j≤n

|Xπ̌(2j−1) − Xπ̌(2j)| .

(35)
To satisfy Assumption 2.3, it is therefore natural to choose π so
as to minimize the right-hand side of (35). Such minimization
problems have been previously considered by Greevy et al.
(2004) in the context of “matched pairs” designs to achieve
“balance” in the sense of Remark 2.2. Algorithms for solving this
minimization problem in a polynomial number of operations
exist. See, for example, the “blossom” algorithm described in
Edmonds (1965) as well as the algorithm described in Derigs

(1988) and implemented in the R package nbpMatching.
The following theorem derives a finite-sample bound on the
right-hand side of (35) for π minimizing the right-hand side of
(35), which implies, in particular, that pairing units in this way
satisfies Assumption 2.3.

Theorem 4.2. Suppose supp(Xi) ⊆ [0, 1]k. Let π be any permu-
tation of 2n elements minimizing the right-hand side of (35).
Then, for each integer m > 1, we have that

1
n

∑
1≤j≤n

|Xπ(2j) − Xπ(2j−1)| ≤
√

k
m

+ mk−12
√

k
n

. (36)

In particular, if m � n
1
k , then π satisfies Assumption 2.3.

Given a pairing satisfying Assumption 2.3, we now turn our
attention to ensuring that the pairing further satisfies Assump-
tion 2.4. To this end, choose π̄ so as to minimize

2
n

∑
1≤j≤� n

2 	
|X̄π̌(2j) − X̄π̌(2j−1)| , (37)

where

X̄j = Xπ(2j) + Xπ(2j−1)

2
. (38)

We note that the aforementioned algorithms may also be used
to solve this minimization problem in a polynomial number of
operations. The following theorem establishes that by reorder-
ing the pairs according to π̄ , we can ensure that the pairing
satisfies Assumption 2.4 in addition to Assumption 2.3.

Theorem 4.3. Suppose supp(Xi) ⊆ [0, 1]k. Let π be a permu-
tation of 2n elements such that Assumption 2.3 is satisfied and
π̄ be any permutation of n elements minimizing (37). Define a
permutation π̃ of 2n elements so that

π̃(2j) = π(2π̄(j)) and π̃(2j − 1) = π(2π̄(j) − 1) (39)

for 1 ≤ j ≤ n. Then, π̃ satisfies Assumptions 2.3 and 2.4.

5. Simulations

In this section, we examine the finite-sample behavior of several
different tests of (3) with �0 = 0 at nominal level α = 0.05 with
a simulation study. For d ∈ {0, 1} and 1 ≤ i ≤ 2n, potential
outcomes are generated according to the equation:

Yi(d) = μd + md(Xi) + σd(Xi)εd,i ,

where μd, md(Xi), σd(Xi) and εd,i are specified in each
model as follows. In each of following specifications, n = 100,
(Xi, ε0,i, ε1,i), i = 1, . . . , 2n are iid, μ0 = 0 and μ1 = �,
where � = 0 to study the behavior of the tests under the null
hypothesis and � = 1

4 to study the behavior of the tests under
the alternative hypothesis.

Model 1: Xi ∼ Unif[0, 1]; m1(Xi) = m0(Xi) = γ (Xi − 1
2 );

εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.
Model 2: As in Model 1, but m1(Xi) = m0(Xi) = sin(γ (X −
1
2 )).
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Table 1. Rej. prob. for Models 1–15 with γ = ιdim(X) for Models 1–15, σ1 = 1, ρ = 0.2.

Under H0 − � = 0 Under H1 − � = 1/4

Model t-test Näive MP-t t-adj R-adj t-test Näive MP-t t-adj R-adj

1 4.25 5.02 5.31 5.29 4.97 40.16 41.87 43.20 43.17 41.44
2 4.32 4.93 5.43 5.42 4.93 39.23 41.37 42.52 42.29 40.78
3 3.51 4.73 5.04 5.15 4.73 35.90 40.09 41.56 42.05 40.67
4 1.28 1.13 1.29 4.89 4.27 5.43 5.12 5.51 15.97 14.45
5 5.69 0.79 0.90 5.68 4.98 9.65 1.94 2.18 9.61 8.60
6 0.87 0.65 0.75 5.33 4.83 4.80 4.03 4.70 19.41 17.36

7 3.29 4.94 5.30 5.44 5.28 35.82 41.56 43.07 43.17 42.16
8 1.00 0.93 1.03 4.56 4.26 0.94 0.93 0.96 4.75 4.37
9 5.30 0.65 0.71 4.28 3.87 7.18 1.52 1.65 6.17 5.83

10 1.20 4.90 5.19 5.23 4.93 22.70 41.39 42.75 42.73 41.62
11 0.66 0.67 0.74 4.42 4.24 0.53 0.58 0.71 4.50 4.17
12 5.05 0.65 0.68 4.18 3.95 5.57 0.79 0.80 4.66 4.32

13 0.00 4.57 4.96 5.00 4.67 0.00 7.93 8.46 8.73 8.26
14 0.75 0.85 0.99 4.76 4.50 0.76 0.84 0.99 4.92 4.63
15 4.93 0.61 0.72 4.77 4.47 4.89 0.62 0.80 4.89 4.74

Model 3: As in Model 2, but with m1(Xi) = m0(Xi)+X2
i − 1

3 .
Model 4: As in Model 1, but m0(Xi) = 0 and m1(Xi) =
10(X2

i − 1
3 ).

Model 5: As in Model 4, but m0(Xi) = −10(X2
i − 1

3 ).
Model 6: As in Model 4, but σ0(Xi) = X2

i and σ1(Xi) = σ1X2
i .

Model 7: Xi = (�(Vi1), �(Vi2))′, where �(·) is the standard
normal c.d.f. and

Vi ∼ N
((

0
0

)
,
(

1 ρ

ρ 1

))
;

m1(Xi) = m0(Xi) = γ ′Xi − 1; εd,i ∼ N(0, 1) for d = 0, 1;
σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.
Model 8: As in Model 7, but m1(Xi) = m0(Xi) + 10(�−1

(Xi1)�−1(Xi2) − ρ).
Model 9: As in Model 7, but m0(Xi) = 5(�−1(Xi1)�−1

(Xi2) − ρ) and m1(Xi) = −m0(Xi).
Model 10: Xi = (�(Vi1), �(Vi2), �(Vi3), �(Vi4), �(Vi5))′,
where �(·) is the standard normal c.d.f. and Vi ∼ N(0, �),
for � with 1 on the diagonal and ρ on all other entries.
m1(Xi) = m0(Xi) = γ ′(Xi − 1

2 ); εd,i ∼ N(0, 1) for d = 0,
1; σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.
Model 11: As in Model 10, but m1(Xi)= m0(Xi)+
10

∑5
j=1 �−1(Xij).

Model 12: As in Model 10, but m0(Xi) = 5
∑5

j=1 �−1(Xij)
and m1(Xi) = −m0(Xi).
Model 13: As in Model 10 with analogous functional forms
for m1(Xi) and m0(Xi), but dim(X) = 100.
Model 14: As in Model 11 with analogous functional forms
for m1(Xi) and m0(Xi), but dim(X) = 100.
Model 15: As in Model 12 with analogous functional forms
for m1(Xi) and m0(Xi), but dim(X) = 100.

For our subsequent discussion, it is useful to note that Models 5,
9, 12, and 15 satisfy (11), Models 1–2, 7, 10, and 13 satisfy (16),
and Models 1–2, 7, 10, and 13 with σ1 = 1 satisfy (31) under the
null hypothesis.

Treatment status is determined according to Assumption 2.2,
where the pairs are calculated as follows. If dim(Xi) = 1,
then pairs are calculated by sorting the Xi as described in
Theorem 4.1. Note that this ensures that both Assumptions 2.3

and 2.4 are satisfied. If dim(Xi) > 1, then the pairs are calculated
by finding π that minimizes the right-hand side of (35) using
the R package nbpMatching. Theorem 4.2 ensures that these
pairs satisfy Assumption 2.3. To further ensure that the pairs
satisfy Assumption 2.4, we reorder the pairs by finding π̄ that
minimizes (37) using the same R package and applying Theo-
rem 4.3.

The results of our simulations are presented in Tables 1–3.
Columns are labeled in the following way:

t-test: The two-sample t-test studied in Theorem 3.1.
naïve: The randomization test defined in (29) with
Tn(Z(n)) = |√n�̂n| and discussed in Remark 3.16. We
henceforth refer to this test as the naïve randomization test.
MP-t: The “matched pairs” t-test studied in Theorem 3.2.
t-adj: The “adjusted” t-test studied in Theorem 3.3.
R-adj: The randomization test studied in Theorem 3.5. We
henceforth refer to this test as the “adjusted” randomization
test.

The tables vary according to the values of γ , σ1 and ρ, which
were not specified in the description of the different models
above. Rejection probabilities are calculated using 104 replica-
tions and presented in percentage points. Because 2n is large, we
employ a stochastic approximation as described in Remark 3.13
with B = 1000 when computing each of the randomization tests.
We organize our discussion of the results by test:

t-test: As expected in light of Theorem 3.1, the two-sample
t-test has rejection probability under the null hypothesis no
greater than the nominal level. In some cases, the rejection
probability under the null hypothesis is far below the nom-
inal level—see, for instance, Models 4, 6–8, 10–11, and 13–
14. In other cases, the rejection probability is close to the
nominal level—see, in particular, Models 5, 9, 12, and 15,
which satisfy (11) and are therefore expected to exhibit this
phenomenon. In almost all cases, the two-sample t-test is
among the least powerful tests, but, as expected, this feature
is especially acute when it has rejection probability under the
null hypothesis severely below the nominal level.
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Table 2. Rej. prob. for Models 1–15 with γ = 1 for Models 1–6, γ ′ = (1, 4) for Models 7–9, γ = ιdim(X) for Models 10–15, σ1 = 2, ρ = 0.7.

Under H0 − � = 0 Under H1 − � = 1/4

Model t-test Näive MP-t t-adj R-adj t-test Näive MP-t t-adj R-adj

1 4.75 5.11 5.37 5.46 5.06 29.46 30.26 31.51 31.49 30.24
2 4.23 4.59 5.03 5.20 4.70 29.33 29.99 31.39 30.89 29.52
3 4.16 4.84 5.27 5.39 5.09 26.60 28.78 30.07 30.30 29.27
4 1.65 1.53 1.65 5.24 4.74 5.80 5.31 5.91 14.95 13.72
5 5.27 0.68 0.81 5.21 4.67 9.59 2.19 2.53 9.54 8.45
6 0.83 0.81 0.91 5.50 4.86 4.89 4.23 4.66 18.25 16.43

7 0.39 5.21 5.66 5.85 5.54 7.38 30.04 31.01 31.20 30.56
8 1.50 1.58 1.66 5.71 5.27 0.69 0.70 0.77 4.80 4.36
9 5.73 1.34 1.42 5.24 4.87 8.28 2.13 2.22 7.33 6.93

10 0.65 4.99 5.46 5.33 5.12 9.74 29.53 30.67 30.63 29.93
11 0.63 0.71 0.76 5.21 4.98 0.60 0.64 0.77 4.94 4.61
12 5.51 0.72 0.82 5.26 4.89 5.42 0.72 0.76 5.18 4.86

13 0.00 4.93 5.39 5.24 5.20 0.00 10.07 10.75 10.74 10.17
14 0.58 0.60 0.67 5.35 5.03 0.61 0.68 0.78 5.08 4.79
15 5.44 0.66 0.66 5.55 5.20 5.04 0.63 0.73 5.18 4.81

Table 3. Rej. prob. for Models 1–12 with γ = 1 for Models 1–6, γ ′ = (4, 1) for Models 7–9, γ = ιdim(X) for Models 10–15, σ1 = 1, ρ = 0.

Under H0 − � = 0 Under H1 − � = 1/4

Model t-test Näive MP-t t-adj R-adj t-test Näive MP-t t-adj R-adj

1 4.51 5.19 5.62 5.66 5.24 39.09 40.88 42.09 41.92 40.56
2 4.09 4.68 5.03 5.08 4.58 39.95 41.59 42.84 42.43 41.20
3 3.67 4.91 5.26 5.55 5.26 35.10 39.48 40.89 41.48 40.15
4 1.07 0.98 1.13 4.83 4.28 5.43 5.00 5.47 16.52 14.95
5 5.21 0.69 0.79 5.21 4.61 9.98 2.17 2.35 9.93 8.89
6 0.67 0.65 0.69 5.17 4.44 5.11 4.50 4.89 19.03 17.23

7 0.28 4.91 5.19 5.50 5.23 11.20 41.61 43.01 43.18 42.06
8 0.70 0.67 0.81 4.41 4.03 0.95 0.96 1.11 5.26 4.75
9 5.37 0.71 0.79 4.30 4.00 6.93 0.95 1.02 5.52 5.10

10 2.28 5.02 5.42 5.39 5.17 29.53 40.23 41.72 41.84 40.74
11 0.90 1.03 1.10 4.12 3.82 1.07 1.10 1.23 3.99 3.75
12 5.35 0.97 1.03 4.02 3.76 5.01 0.86 0.91 3.60 3.41

13 2.71 4.88 5.22 5.29 5.15 6.51 10.08 10.84 10.78 10.47
14 3.92 3.68 4.04 4.79 4.55 4.38 4.15 4.52 5.19 4.84
15 5.20 2.94 3.18 4.25 3.97 5.61 3.07 3.38 4.36 4.13

Naïve: As expected following the discussion in Remark 3.16,
the naïve randomization test has rejection probability under
the null hypothesis no greater than the nominal level. In some
cases, the rejection probability under the null hypothesis is
far below the nominal level—see, for instance, Models 4–6,
8–9, 11–12, and 14–15. In other cases, the rejection probabil-
ity is close to the nominal level—see, in particular, Models 1–
2, 7, 10, and 13, which satisfy (16) and are therefore expected
to exhibit this phenomenon. Models 1–2, 7, 10, and 13 with
σ1 = 1 (corresponding to Tables 1 and 3) in fact satisfy
(31) under the null hypothesis, so the rejection probability
is exactly equal to the nominal level up to simulation error,
in agreement with Theorem 3.4. If its rejection probability
is close to the nominal level, then it is also among the most
powerful tests, but it otherwise fares poorly in terms of power,
especially when compared to the “adjusted” randomization
test.
MP-t: As expected in light of Theorem 3.2, the “matched
pairs” t-test has rejection probability under the null hypoth-
esis no greater than the nominal level. In some cases, the
rejection probability under the null hypothesis is far below
the nominal level—see, for instance, Models 4–6, 8–9, 11–12,

and 14–15. In other cases, the rejection probability is close to
the nominal level—see, in particular, Models 1–2, 7, 10, and
13, which satisfy (16) and are therefore expected to exhibit
this phenomenon. In almost all cases, the “matched pairs” t-
test is among the least powerful tests, but, as expected, this
feature is especially acute when it has rejection probability
under the null hypothesis severely below the nominal level.
t-adj: As expected in light of Theorem 3.3, the “adjusted” t-
test has rejection probability under the null hypothesis close
to the nominal level in all cases. In all cases, it is the most
powerful test.
R-adj: As expected in light of Theorem 3.5, the “adjusted”
randomization test has rejection probability under the null
hypothesis close to the nominal level in almost all cases. The
exception is Model 8, for which the test exhibits some under-
rejection under the null hypothesis. For Models 1–2, 7, 10,
and 13 with σ1 = 1 (corresponding to Tables 1 and 3),
which, as mentioned previously, satisfy (31) under the null
hypothesis, the rejection probability is again exactly equal to
the nominal level up to simulation error, in agreement with
Theorem 3.4. In all cases, it is nearly as powerful as our most
powerful test, the “adjusted” t-test.
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Table 4. Inferences about �(Q) using different tests in the empirical application.

t-test näive MP-t t-adj R-adj

�̂n 219 219 219 219 219
Std. errors 81 – 55 52 –
Conf. int. [59, 379] [109, 332] [109, 329] [116, 322] [115, 322]

In Section S.1.11 of the Supplemental Appendix, we present fur-
ther simulations largely similar to the specifications presented
except either n = 40 instead of n = 100 or εd,i ∼ t4 instead of
a standard normal distribution. The results remain qualitatively
the same. To further emphasize the important power differences
between the tests discussed above, we additionally present in
Section S.1.11 of the Supplemental Appendix power curves for
the different tests for a single specification.

6. Empirical Application

In this section, we apply several different tests of (3) to a real-
world example. For this purpose, we run a button-pressing
experiment on Amazon Mechanical Turk (MTurk) as in DellaV-
igna and Pope (2018). In the experiment, participants are asked
to press buttons “a” and “b” alternately as much as possible in 5
min. The outcome Yi is number of presses. The treatment Di is
an indicator for whether participants receive financial incentives
for the button-pressing task: Di = 1 if a unit is treated, that is,
she receives financial incentives for pressing more buttons, and
Di = 0 if a unit is untreated, that is, she receives no financial
incentives. The sample size is 2n = 120. Following DellaVigna
and Pope (2018), each treated unit receives an additional cent
for every 100 points they score, where one point corresponds to
one alternate press. The covariate Xi is a scalar variable which
denotes the individual’s performance in prior version of the task
with no financial incentives. Units are paired according to Xi
as in Theorem 4.1. Using the usual duality between hypothesis
testing and constructing confidence intervals, we construct a
95% confidence interval for (2) by inverting the corresponding
test. The results are presented in Table 4 along with the point
estimator of �(Q) given by �̂n. In the case of the two-sample
t-test, “matched pairs” t-test and “adjusted” t-test, it is possible
to describe the corresponding confidence intervals in terms of
a standard error, so we include those in the table as well. In the
case of the two randomization tests, it is not possible to do this;
in these instances, the confidence intervals are instead computed
by inverting tests of (3) along a grid of equally spaced points
from 0 to 700.

We note the following features of our empirical results: (a)
the confidence interval given by the “adjusted” t-test is shorter
than the one given by the two-sample t-test; (b) the confidence
interval given by the “adjusted” t-test is shorter than the one
given by the “matched pairs” t-test; and (c) the confidence
interval given by the “adjusted” randomization test is shorter
than the one given by the näive randomization test. From our
theoretical results, (a) suggests (11) is not satisfied, while (b) and
(c) suggest that (16) is not satisfied either. Our simulation study
confirms that when (11) or (16) are not satisfied, there can be
dramatic benefits from using the asymptotically exact methods.

7. Recommendations for Empirical Practice

We conclude with some recommendations for empirical prac-
tice based on our theoretical results as well as the simulation
study above. For inference about the average treatment effect
in the type of “matched pairs” design studied in this article, we
do not recommend the two-sample t-test, the “matched pairs”
t-test or the naïve randomization test, which are often con-
siderably less powerful than both the “adjusted” t-test and the
“adjusted” randomization test. In our simulations the “adjusted”
t-test is always the most powerful among the tests we consider,
though sometimes by a small margin in comparison to the
“adjusted” randomization test. We also note that the modest
gain in power of the “adjusted” t-test is accompanied by the
generally higher rejection probability under the null hypothesis
of the “adjusted” t-test as well. The “adjusted” randomization
test, however, retains the attractive feature that the finite-sample
rejection probability under the null hypothesis is no greater
than the nominal size for certain distributions satisfying the
null hypothesis. To the extent that this feature is deemed impor-
tant, the “adjusted” randomization test may be preferred to the
“adjusted” t-test despite having slightly lower power.

Supplementary materials

The supplemental materials include (1) a document which provides proofs
for all results for the authors’ paper “Inference in Experiments with
Matched Pairs,” details for Remark 3.8, as well as some additional simu-
lations and (2) The R code used for simulations in the paper.
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