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Abstract

In a setting with a multi-valued outcome, treatment and instrument, this paper considers the problem

of inference for a general class of treatment effect parameters. The class of parameters considered are

those that can be expressed as the expectation of a function of the response type conditional on a

generalized principal stratum. Here, the response type simply refers to the vector of potential outcomes

and potential treatments, and a generalized principal stratum is a set of possible values for the response

type. In addition to instrument exogeneity, the main substantive restriction imposed rules out certain

values for the response types in the sense that they are assumed to occur with probability zero. It

is shown through a series of examples that this framework includes a wide variety of parameters and

assumptions that have been considered in the previous literature. A key result in our analysis is a

characterization of the identified set for such parameters under these assumptions in terms of existence

of a non-negative solution to linear systems of equations with a special structure. We propose methods

for inference exploiting this special structure and recent results in Fang et al. (2023).
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1 Introduction

In a setting of a multi-valued outcome, treatment and instrument, we propose a general approach for inference

for a broad class of treatment effect parameters. The class of parameters considered are those that can be

expressed as the expectation of a function of the response type conditional on a generalized principal stratum.

Here, the response type simply refers to the vector of potential outcomes and potential treatments, and a

generalized principal stratum is a set of possible values for the response type. In this way, our framework

accommodates many parameters that have been considered previously in the literature, including both

average and distributional treatment effect parameters, such as the probability of being strictly helped and

the probability of not being hurt by the treatment. It further accommodates versions of these parameters

conditional on sets of possible values of potential treatments, such as the local average treatment effect

in Imbens and Angrist (1994) and average effects conditional on principal strata in Frangakis and Rubin

(2002), or conditional on sets of possible values of potential outcomes, such as the parameters considered in

Heckman et al. (1997) and Heckman and Smith (1998).

In addition to instrument exogeneity, the main substantive restriction imposed in our analysis is that

certain values for the response types occur with probability zero. We show through a series of examples

that our framework accommodates a wide variety of assumptions that have been considered in the previous

literature, including the following: (i) restrictions in the analysis of randomized controlled trials (RCTs) with

non-compliance considered, e.g., in Imbens and Angrist (1994); Cheng and Small (2006); (ii) generalizations

of these restrictions considered in Bai et al. (2024); (iii) revealed preference-type restrictions on response

types considered in Kirkeboen et al. (2016); Kline and Walters (2016); Heckman and Pinto (2018); and finally,

(iv) restrictions on the ordering of potential treatments or on the ordering of potential outcomes considered

in Manski (1997); Manski and Pepper (1998); Machado et al. (2019). We note that such restrictions are

typically insufficient for identification of such parameters.

A key result in our analysis is a characterization of the identified set for such parameters under these

assumptions in terms of existence of a non-negative solution to linear systems of equations with a special

structure. Using this result, we exploit results in Fang et al. (2023) to develop a test for the null hypothesis

that a pre-specified value for the parameter of interest lies in the identified set. Importantly, the resulting

test remains well behaved even in “high-dimensional” settings, meaning it is uniformly consistent in level

over a large class of distributions satisfying weak assumptions and permitting the support of the outcome,

treatment and instrument or the support of the response types to be large relative to the sample size.

Through test inversion, we may also construct confidence regions for the identified set that are uniformly

consistent in level.

For a very limited number of special cases of our general framework, other methods for inference have

been proposed in the previous literature; see, e.g., Cheng and Small (2006), Bhattacharya et al. (2008, 2012),

and Machado et al. (2019). These approaches all rely upon closed-form expressions for the identified set

for the parameter of interest, which must be computed on a case-by-case basis. Moreover, as explained

in Remark 4.1, such an approach is only computationally feasible when the support of the response types

is very small. In contrast, our approach does not rely on such expressions and remains computationally
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feasible even in high-dimensional settings. Finally, we note that a by-product of our analysis is that the

bounds for the parameter of interest in Cheng and Small (2006) are not sharp; see Remark 4.2 for further

discussion. Further, as explained in Remark 4.4, the approach to inference developed in Cheng and Small

(2006) is invalid in that the resulting confidence regions may fail to cover the parameter of interest with

(approximately) the desired coverage probability even in large samples.

The remainder of the paper is organized as follows. Section 2 introduces our formal setup and notation. In

Section 3, we provide several examples of parameters and restrictions previously considered in the literature

that are nested by our framework. We present our inference method in Section 4. Proofs of all results can

be found in the Appendix.

2 Setup and Notation

Denote by Y ∈ Y a multi-valued outcome of interest, by D ∈ D a multi-valued endogenous regressor (i.e.,

the treatment), and by Z ∈ Z a multi-valued instrumental variable. To rule out degenerate cases, we assume

throughout that 2 ≤ |Y| < ∞, 2 ≤ |D| < ∞, and 2 ≤ |Z| < ∞. For later use, we also define M ≡ Y×D×Z.

Further denote by Y (d) ∈ Y the potential outcome if D = d ∈ D and by D(z) ∈ D the potential treatment

if Z = z ∈ Z. As usual, we assume that

Y =
∑
d∈D

Y (d)1{D = d} and D =
∑
z∈Z

D(z)1{Z = z} . (1)

Let P denote the distribution of (Y,D,Z) and Q denote the distribution of ((Y (d) : d ∈ D), (D(z) : z ∈
Z), Z). For T defined by (1), we have

(Y,D,Z) = T ((Y (d) : d ∈ D), (D(z) : z ∈ Z), Z) ,

and therefore P = QT−1. In our discussion below, it will be convenient to define R ≡ (Ry, Rd), where

Ry ≡ (Y (d) : d ∈ D) and Rd ≡ (D(z) : z ∈ Z). Following Heckman and Pinto (2018), we will refer to Rd as

the “treatment response type.” By analogy with this terminology, we will also refer to Ry as the “outcome

response type” and to R as simply the “response type.”

Below we will require that Q ∈ Q, where Q is a class of distributions satisfying assumptions that we will

specify. Different choices of Q represent different assumptions that we impose on the distribution of potential

outcomes and potential treatments. In this sense, Q may be viewed as a model for potential outcomes and

potential treatments.

Given P and a model Q, we define the set of Q ∈ Q that can rationalize P as

Q0(P,Q) = {Q ∈ Q : P = QT−1} .

We say Q is consistent with P if and only if Q0(P,Q) ̸= ∅. For every model Q considered in this paper,

every Q ∈ Q is assumed to satisfy:
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Assumption 2.1 (Instrument Exogeneity). R ⊥⊥ Z under Q.

Our remaining restrictions on Q will be formulated in terms of restrictions on possible values of R. These

restrictions will be expressed in terms of R ⊆ Y |D| ×D|Z|. In Section 3, we provide several different choices

of R that have been previously considered in the literature. For a given choice of R, we will impose the

following assumption on every Q ∈ Q:

Assumption 2.2 (Response Type Restrictions). Q{R ∈ R} = 1.

Following Frangakis and Rubin (2002), sets of the form {Rd = rd} for rd a possible value of Rd are referred

to as “principal strata.” By analogy with this terminology, we will refer to sets of the form {R ∈ R′} for

R′ ⊆ R as “generalized principal strata.”

Finally, we define our parameters of interest. Using the notation above, the parameters we will consider

can be written as

θ(Q) ≡ EQ[g(R) | R ∈ R′] (2)

for different choices of g : R → R and R′ ⊆ R. Note that for θ(Q) in (2) to be well defined we require Q to

satisfy Q{R ∈ R′} > 0. A wide variety of parameters can be accommodated in this way. In Section 3, we will

describe some specific parameters that have been considered previously in the literature corresponding to

different choices of g and R′, but we note that natural choices of g correspond to the effect of one treatment

versus another, i.e., g(R) = Y (d) − Y (d′) for d ∈ D and d′ ∈ D, and the probability that one treatment

leads to a larger outcome than another treatment, i.e., g(R) = 1{Y (d) > Y (d′)} for d ∈ D and d′ ∈ D. We

further note that when R′ = R, θ(Q) defined in (2) simplifies to EQ[g(R)]. For fixed P and Q, note that

the identified set for θ(Q) under P relative to Q is given by

Θ0(P,Q) ≡ {θ(Q) : Q ∈ Q0(P,Q) and Q{R ∈ R′} > 0} . (3)

Θ0(P,Q) is nonempty whenever there exists at least one Q ∈ Q0(P,Q) with Q{R ∈ R′} > 0. By con-

struction, this set is “sharp” in the sense that for any value in the set there exists Q ∈ Q0(P,Q) with

Q{R ∈ R′} > 0 for which θ(Q) equals the prescribed value.

3 Examples

In this section, we show how to accommodate several examples from the previous literature in our framework.

Our discussion focuses in particular on Assumption 2.1 and the specification of R in Assumption 2.2, but,

where the cited literature has emphasized specific parameters of interest, we additionally describe how those

parameters of interest can be expressed as (2) for suitable choices of g and R′.

Example 3.1 (RCT with one-sided non-compliance). Consider a multi-arm randomized controlled trial

(RCT) with noncompliance, where D = Z = {0, . . . , |D|−1}, Z = d denotes random assignment to treatment

d, and D(d) = d denotes that the subject would comply with assignment if assigned to treatment d. In
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this example, Q satisfies Assumption 2.1 because Z is randomly assigned. Suppose non-compliance to the

assignment is one-sided in the sense that one can always take the control d = 0, but, for any other treatment

d ̸= 0, one can only take that treatment if assigned to that treatment. This restriction can be formulated in

terms of Assumption 2.2 with R = {(y(0), . . . , y(|D| − 1), d(0), . . . , d(|D| − 1)) : d(j) ∈ {0, j} for all j ∈ D}.

Example 3.2. Cheng and Small (2006) study the special case of Example 3.1 in which D = Z = {0, 1, 2}.
As explained in Example 3.1, Q satisfies Assumption 2.1 because Z is randomly assigned. Their “Mono-

tonicity I” assumption corresponds exactly to Assumption 2.2 with R defined as in Example 3.1. They

further consider imposing the restriction that Q{D(1) = 1 | D(2) = 2} = 1, i.e., subjects who would

comply with assignment to treatment 2 would also comply with assignment to treatment 1. They ar-

gue that such an assumption is plausible in contexts where the “cost” of compliance with treatment 1

is lower than treatment 2. The combination of these two restrictions can be formulated in terms of As-

sumption 2.2 with R = {(y(0), y(1), y(2), d(0), d(1), d(2)) : (d(0), d(1), d(2)) ∈ {(0, 0, 0), (0, 1, 0), (0, 1, 2)}}.
In their application, Cheng and Small (2006) are particularly interested in the following parameters: (i)

EQ[Y (j) − Y (0) | (D(0), D(1), D(2)) = (0, 1, 2)] for j ∈ {1, 2}; and (ii) Q{(D(0), D(1), D(2)) = rd} for

different possible values of rd. Each of these parameters can be written as (2) for appropriate choices

of g and R′. For example, the parameter in (i) equals EQ[g(R)|R ∈ R′] for g(R) = Y (j) − Y (0) and

R′ = {(y(0), y(1), y(2), d(0), d(1), d(2)) ∈ R : (d(0), d(1), d(2)) = (0, 1, 2)}.

Example 3.3 (Encouragement design). Consider a multi-arm RCT with noncompliance, where D = Z =

{0, . . . , |D| − 1}, Z = d denotes random assignment to treatment d, and D(d) = d denotes that the subject

would comply with assignment if assigned to treatment d. More generally, not necessarily in the context of

an RCT, one can interpret Z = d as random encouragement to treatment d and interpret D(d) = d as the

subject would take treatment d if encouraged to do so. In this example, Q satisfies Assumption 2.1 because

Z is randomly assigned. Bai et al. (2024) generalize the “no-defier” restriction of Imbens and Angrist (1994)

as follows:

Q{D(d) ̸= d, D(d′) = d for some d′ ̸= d} = 0 , (4)

i.e., there is zero probability that a subject would not take treatment d if assigned to (encouraged to take)

d but would take d if assigned (encouraged) to some other treatment d′ ̸= d. This restriction can be

formulated in terms of Assumption 2.2 with R = {(y(0), . . . , y(|D| − 1), d(0), . . . , d(|D| − 1)) : d(j) ̸= j ⇒
d(k) ̸= j ∀ j, k ∈ D}.

Example 3.4 (RCT with close substitute). Kline and Walters (2016) consider an RCT with a “close sub-

stitute” to study the effects of preschooling on educational outcomes. In their setting, D ∈ D = {0, 1, 2},
where D = 0 denotes home care (no preschool), D = 2 denotes a preschool program called Head Start, and

D = 1 denotes preschools other than Head Start, i.e., the close substitute. Let Z ∈ Z = {0, 1} denote an

indicator variable for an offer to attend Head Start. Assumption 2.1 holds because Z is randomly assigned.

Kline and Walters (2016) impose the restriction that

Q{D(1) = 2 | D(0) ̸= D(1)} = 1 . (5)
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The condition in (5) states that if a family’s schooling choice changes upon receiving a Head Start offer,

then they must choose Head Start when receiving the offer. In other words, it cannot be the case that upon

receiving a Head Start offer, a family switches from no preschool to preschools other than Head Start, or the

other way around. The restriction can be formulated in terms of Assumption 2.2 with

R = {(y(0), y(1), y(2), d(0), d(1)) : (d(0), d(1)) ∈ {(0, 0), (0, 2), (1, 1), (1, 2), (2, 2)}} .

Kline and Walters (2016) show that the Wald estimand identifies a weighted combination of what they call

“sub-LATEs”:

E[Y | Z = 1]− E[Y | Z = 0]

P{D = 2 | Z = 1} − P{D = 2 | Z = 0}
= ScSubLATE12 + (1− Sc)SubLATE02 ,

where

SubLATE12 = EQ[Y (2)− Y (1) | D(1) = 2, D(0) = 1]

SubLATE02 = EQ[Y (2)− Y (0) | D(1) = 2, D(0) = 0]

and Sc = Q{D(1) = 2, D(0) = 1 | D(1) = 2, D(0) ̸= 2}. Kline and Walters (2016) establish conditions under

which optimal policy depends upon these “sub-LATEs.” Here, Sc and the “sub-LATEs” can all be written

as (2) for appropriate choices of g and R′.

Example 3.5. Kirkeboen et al. (2016) study the effects of fields of study on earnings. In their setting,

D = {0, 1, 2} represent three fields of study, ordered by their (soft) admission cutoffs from the lowest to the

highest. The instrument is Z ∈ {0, 1, 2}, with Z = 1 when the student crosses the (soft) admission cutoff

for field 1, Z = 2 when the student crosses the (soft) admission cutoff for field 2, and Z = 0 otherwise. The

authors assume that Z is exogenous in the sense that Q satisfies Assumption 2.1 and impose the following

monotonicity conditions:

Q{D(1) = 1|D(0) = 1} = 1 , (6)

Q{D(2) = 2|D(0) = 2} = 1 . (7)

The conditions in (6)–(7) require that crossing the cutoff for field 1 or 2 weakly encourages them towards

that field. They further impose the following “irrelevance” conditions:

Q{1{D(1) = 2} = 1{D(0) = 2}|D(0) ̸= 1, D(1) ̸= 1} = 1 , (8)

Q{1{D(2) = 1} = 1{D(0) = 1}|D(0) ̸= 2, D(2) ̸= 2} = 1 . (9)

The condition in (8) states that if crossing the cutoff for field 1 does not cause the student to switch to field 1,

then it does not cause them to switch to or away from field 2. A similar interpretation applies to (9). The re-

strictions of (6)–(9) can be formulated in terms of Assumption 2.2 withR = {(y(0), y(1), y(2), d(0), d(1), d(2)) :
(d(0), d(1), d(2)) ∈ {(0, 0, 0), (0, 0, 2), (0, 1, 0), (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 2), (2, 2, 2)}}.
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Example 3.6 (Restrictions from WARP). Heckman and Pinto (2018) consider a setting in which there is

a voucher Z that subsidizes in different ways that we specify below the purchase of three different cars, that

we denote by A, B and C. They further assume that the voucher is randomly assigned, so that Assumption

2.1 holds. The treatment D corresponds to the purchase of the different cars; let D = 1 correspond to the

purchase of car A, D = 2, correspond to the purchase of car B, and by D = 3 correspond to the purchase

of car C. In this setting, Heckman and Pinto (2018) consider a series of examples in which they use the

Weak Axiom of Revealed Preference (WARP) to restrict treatment response types, each of which can be

formulated in terms of Assumption 2.2 for appropriate choice of R.

(i) In their leading example, Z = 0 corresponds to no voucher, Z = 1 corresponds to a voucher that

subsidizes the consumption of A, and Z = 2 corresponds to a voucher that subsidizes the consumption of

either B or C. WARP generates the restriction in Table III of Heckman and Pinto (2018), which can be

formulated in terms of Assumption 2.2 with R = {(y(0), y(1), y(2), d(0), d(1), d(2)) : (d(0), d(1), d(2)) ∈
{(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 1), (1, 1, 1), (2, 0, 2), (2, 2, 2)}}.

(ii) In second example, Z = 0 corresponds to no voucher, Z = 1 corresponds to a voucher that subsidizes

the consumption of B, and Z = 2 corresponds to a voucher that subsidizes the consumption of B

or C. WARP generates the restriction in Table V of Heckman and Pinto (2018), which can be for-

mulated in terms of Assumption 2.2 with R = {(y(0), y(1), y(2), d(0), d(1), d(2)) : (d(0), d(1), d(2)) ∈
{(0, 0, 0), (0, 0, 2), (0, 1, 1), (0, 1, 2), (1, 1, 1), (2, 2, 2), (2, 1, 2)}}.

(iii) Finally, in a third example, Z = 0 corresponds to a voucher that subsidizes the consumption of C,

Z = 1 corresponds to a voucher that subsidizes the consumption of B, and Z = 2 corresponds to

a voucher that subsidizes the consumption of B or C. WARP generates the restriction in Table

VI of Heckman and Pinto (2018), which can be formulated in terms of Assumption 2.2 with R =

{(y(0), y(1), y(2), d(0), d(1), d(2)) : (d(0), d(1), d(2)) ∈ {(0, 0, 0), (0, 1, 1), (1, 1, 1), (2, 0, 2), (2, 1, 1),
(2, 1, 2), (2, 2, 2)}}.

Heckman and Pinto (2018) provide several additional examples that also fit within our framework.

Example 3.7 (Ordered monotonicity with known direction). Consider a setting where both the treatment

and the instrument admit a natural ordering and write D = {0, . . . , |D| − 1} and Z = {0, . . . , |Z| − 1}.
Suppose further that Z is randomly assigned, so Assumption 2.1 holds. In many applications, it is reasonable

to assume that Q{D(j) ≥ D(k)} = 1 for any pair of values for the instrument j, k ∈ Z with j ≥ k. For

example, the treatment may be number of condoms purchased, the instrument may be level of subsidy

for condoms, and the restriction is that one would purchase at least as many condoms with a greater

subsidy as with a lower subsidy. This restriction can be formulated in terms of Assumption 2.2 with R =

{(y(0), . . . , y(|D| − 1), d(0), . . . , d(|D| − 1)) : d(|Z| − 1) ≥ . . . ≥ d(0)}.

Example 3.8 (Monotone treatment response). Consider a setting where the treatment admits a natural

ordering and write D = {0, . . . , |D| − 1}. Suppose further that Z is randomly assigned, so Assumption 2.1

holds. Following Manski (1997), in many applications it is reasonable to assume that Q{Y (j) ≥ Y (k)} = 1

for any pair of treatments j, k ∈ D with j ≥ k. For example, in Manski and Pepper (1998), the treatment
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is years of schooling and the outcome is log(wage), and the restriction is that higher years of schooling

leads to (weakly) higher log(wage). This restriction can be formulated in terms of Assumption 2.2 with

R = {(y(0), . . . , y(|D| − 1), d(0), . . . , d(|Z| − 1)) : y(|D| − 1) ≥ . . . ≥ y(0)}.

Remark 3.1. Angrist and Imbens (1995) consider the monotonicity assumption of Example 3.7 but with

the direction of the monotonicity not imposed a priori, i.e., they consider the restriction that, for any pair of

values for the instrument j, k ∈ Z, either Q{D(j) ≥ D(k)} = 1 or Q{D(j) ≤ D(k)} = 1. Such a restriction is

also analyzed in Vytlacil (2006) and in Heckman and Pinto (2018), where the latter paper terms it “ordered

monotonicity.” This restriction is equivalent to imposing Q{R ∈ Rπ} = 1 for some π ∈ Π(|Z|), where
Π(|Z|) is the set of all permutations of {0, . . . , |Z|−1} and Rπ = {(y(0), . . . , y(|D|−1), d(0), . . . , d(|D|−1)) :

d(π(|Z| − 1)) ≥ . . . ≥ d(π(0))}. A similar generalization can be applied to Example 3.8. In particular,

Machado et al. (2019) study such a generalization with |D| = |Z| = 2. Such examples fall outside of the

framework we consider in this paper.

Example 3.9 (Harmless treatment). Consider a setting where Z is randomly assigned, so Assumption 2.1

holds, and there is a baseline treatment, i.e., the control, corresponding to 0 ∈ D. In many applications, it

is reasonable to assume the remaining treatments are all harmless relative to the control. For example, in

Angrist et al. (2009), the outcome is academic performance, the control is no treatment, and the non-control

treatments are (i) providing students with academic peer-advising service; (ii) financial incentives for good

academic performance; and (iii) both (i) and (ii). It is therefore natural to assume that Q{Y (d) ≥ Y (0)} = 1

for all d ∈ D. This restriction can be formulated in terms of Assumption 2.2 with R = {(y(0), . . . , y(|D| −
1), d(0), . . . , d(|Z| − 1)) : y(d) ≥ y(0) for all d ∈ D}.

Remark 3.2. In many of the examples discussed above, Y may be an ordinal outcome. In such instances,

average treatment effects may not be interpretable; researchers may therefore consider instead the following

types of parameters: (i) Q{Yj > Yk | R ∈ R′}, the conditional probability of benefit of treatment j versus

treatment k; (ii) Q{Yj ≥ Yk | R ∈ R′}, the conditional probability of no harm of treatment j versus

treatment k; or (iii) Q{Yj > Yk | R ∈ R′} −Q{Yk > Yj | R ∈ R′}, the conditional relative treatment effect

of treatment j versus k. Each of these parameters can be written as (2) for appropriate choices of g. For

previous analysis of such parameters when R′ = R and |D| = 2 or 3, see Lu et al. (2018), Huang et al. (2019)

and Gabriel et al. (2024).

4 Inference

Let (Yi, Di, Zi), i = 1, . . . , n ∼ P ∈ P, where P is a “large” class of possible distributions for P that we will

specify below. In this section, we consider the problem of testing

H0 : P ∈ P0 versus H1 : P ∈ P \P0 (10)

at level α ∈ (0, 1), where, for a pre-specified value of θ0,

P0 = {P ∈ P : θ0 ∈ Θ0(P,Q)} . (11)
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As explained further below, using such a test, we will be able to construct confidence regions for θ(Q) through

test inversion.

The key insight underlying the construction of our test is the following lemma, which provides a convenient

reformulation of P0 in terms of existence of a non-negative solution to a (possibly under-determined) system

of linear equations in which the “coefficients” are known. The statement of the lemma involves the following

quantity:

β(P ) ≡ ((pyd|z(P ) : (y, d, z) ∈ M), 1, 0)′ , (12)

where pyd|z(P ) ≡ P{Y = y,D = d|Z = z}. Using this notation, we have the following result:

Lemma 4.1. Suppose every Q ∈ Q satisfies Assumptions 2.1 and 2.2. Then, for β(P ) defined in (12) and

a matrix A defined in the beginning of Appendix A that depends only on R in Assumption 2.2, θ0 in (11),

and the quantities g and R′ in the definition of θ(Q) in (2),

P0 ⊆ cl(P0) ⊆ {P ∈ P : Ax = β(P ) for some x ≥ 0} , (13)

where cl(P0) denotes the closure of P0 with respect to the usual topology. Furthermore, the final inclusion

in (13) is an equality whenever P0 ̸= ∅.

Remark 4.1. For the special case in which Q{R ∈ R′} > 0 for all Q ∈ Q and is known or identified, in the

sense that {Q{R ∈ R′} : Q ∈ Q0(P,Q)} is a singleton for all P ∈ P for which Q0(P,Q) ̸= ∅, it is possible to
use the characterization of P0 in Lemma 4.1 to derive L(P ) and U(P ) such that Θ0(P,Q) = [L(P ), U(P )]

for all P ∈ P for which Q0(P,Q) ̸= ∅. As in Balke and Pearl (1997), the key idea is to express L(P ) and

U(P ) as the values of suitable linear programs and to use the duals of these programs to obtain expressions

for L(P ) and U(P ) in terms of pyd|z(P ) through vertex enumeration. Computing L(P ) and U(P ) in this

way rapidly becomes computationally prohibitive as the support of (Y,D,Z) becomes large. We describe

this procedure in more detail in Appendix B, and further develop a related procedure when Q{R ∈ R′}
is not identified. Following the approach in Machado et al. (2019), it is possible to use such expressions

for inference, but a virtue of the approach we pursue here is that it does not rely on knowledge of these

expressions.

Remark 4.2. As explained in Example 3.2, Cheng and Small (2006) consider an RCT with one-sided

noncompliance and |D| = 3. In this setting, they study a variety of parameters of interest, but are par-

ticularly interested in EQ[Y (j) − Y (0) | (D(0), D(1), D(2)) = (0, 1, 2)] for j ∈ {1, 2}, EQ[Y (1) − Y (0) |
(D(0), D(1), D(2)) = (0, 1, 0)] and EQ[Y (2) − Y (0) | (D(0), D(1), D(2)) = (0, 0, 2)]. For each of these pa-

rameters, they derive upper and lower bounds, L̃(P ) and Ũ(P ), respectively, under their “Monotonicity I”

assumption alone and in combination with their “Monotonicity II” assumption. We show in Appendix C that

the bounds they derived under “Monotonicity I” assumption alone, in which Q{(D(0), D(1), D(2)) = (0, i, j)}
for i ∈ {0, 1}, j ∈ {0, 2} is not identified, need not be sharp in the sense that (i) L(P ) ≥ L̃(P ) and

U(P ) ≤ Ũ(P ) for all P ∈ P for which Q0(P,Q) ̸= ∅; and (ii) L(P ) > L̃(P ) or U(P ) < Ũ(P ) holds for some

P ∈ P for which Q0(P,Q) ̸= ∅, where L(P ) and U(P ) are the sharp bounds derived using our approach in

Remark 4.1.
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In order to test (10), it follows from Lemma 4.1 that we may exploit recently developed tests for the

right-hand side of the inclusion in (13). We follow the approach developed in Fang et al. (2023), which has

been shown to behave well even when the number of rows and/or columns of A are large relative to the

sample size n. For other approaches to the same problem, see Bai et al. (2022).

We begin our description of the proposed test by defining the test statistic. In order to do so, we

require some further notation. Denote by P̂n the empirical distribution of (Yi, Di, Zi), i = 1, . . . , n and define

β̂n ≡ β(P̂n). Let Ω
e(P ) be the standard deviation matrix of the limiting distribution of

√
n(β̂n − β(P )) and

Ωi(P ) be the standard deviation matrix of the limit in distribution of
√
nAA†(β̂n − β(P )), where A† is the

Moore-Penrose inverse of A; define Ω̂e
n ≡ Ωe(P̂n) and Ω̂i

n ≡ Ωi(P̂n). Using this notation, our proposed test

rejects for large values of

Tn ≡ max

{
sup
s∈V̂e

n

√
n⟨s, (I −AA†)β̂n⟩, sup

s∈V̂i
n

√
n⟨A†s,A†β̂n⟩

}
,

where V̂e
n ≡ {s ∈ R|M|+2 : ∥Ω̂e

ns∥1 ≤ 1} and V̂ i
n ≡ {s ∈ R|M|+2 : A†s ≤ 0 and ∥Ω̂i

nAA†s∥1 ≤ 1}.

Next, we define the critical value with which we compare Tn. To this end, define, for λn ≤ 1, Ûn(s) ≡
λn

√
n⟨A†s,A†β̂r

n⟩, where

β̂r
n ∈ argmin

b
sup
s∈V̂i

n

|⟨A†s,A†(β̂n − b)⟩| s.t. Ax = b for some x ≥ 0 and b = (b′u, 1, 0)
′ for bu ∈ R|M| .

For x ∈ R, Ve ⊆ R, Vi ⊆ R, U : R|M|+2 → R, and P ∈ P, define

Jn(x,Ve,Vi,U, P ) ≡ P

{
max

{
sup
s∈Ve

⟨s, (I −AA†)β̂n⟩, sup
s∈Vi

(
⟨A†s,A†(β̂n − β(P ))⟩+ U(s)

)}
≤ x

}
,

and for α ∈ (0, 1), define

J−1
n (1− α,Ve,Vi,U, P ) ≡ inf{x ∈ R : Jn(x,Ve,Vi,U, P ) ≥ 1− α} .

In terms of this notation, the critical value is given by ĉn(1− α) ≡ J−1
n (1− α, V̂e

n, V̂i
n, Ûn, P̂n).

Fang et al. (2023) show that the test ϕn(θ0) ≡ 1{Tn > ĉn(1− α)} satisfies

lim sup
n→∞

sup
P∈P0

EP [ϕn] ≤ α

under weak assumptions on P. We omit a detailed discussion of these assumptions, but emphasize our prior

point that the assumptions in Fang et al. (2023) permit that the number of rows and/or columns of A are

large relative to the sample size n. This feature is important for the types of applications considered in our

paper since these dimensions can grow rapidly as the number of possible values for the outcome, treatment

and instrument grow. Indeed, if each of these quantities only take on k values, then the matrix A in the

statement of Lemma 4.1 has k3 + 2 rows and kk × kk columns.

Using the test above, we can construct a confidence region for θ(Q). To this end, define the confidence
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region as

Cn = {θ0 ∈ R : ϕn(θ0) = 0} .

It it straightforward to show that

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P,Q)

P{θ ∈ Cn} ≥ 1− α .

Remark 4.3. As explained previously, our main substantive restriction, Assumption 2.2, imposes that

response types take on certain values with probability zero. Our framework can easily be modified, however,

to accommodate the restriction that response types take on certain values with at most (or at least) some

pre-specified probability. Our framework thereby permits sensitivity analysis, as in Masten and Poirier

(2020). For instance, in Example 3.3, one may relax (4) so that it instead specifies that the left-hand side

is at most some pre-specified amount ϵ > 0, and explore how inferences on θ(Q) change as one varies ϵ. In

this way, we can generalize the analysis of Noack (2021) to multi-valued instruments and treatments. To

provide another example, consier the setting of Example 3.9. Instead of assuming that each treatment is

“harmless,” we may modify the example so that each treatment only causes “harm” with probability at most

ϵ > 0. If, for example, the treatment is a surgery, then ϵ may be interpreted as the probability of a surgical

complication.

Remark 4.4. As explained in Remark 4.2, Cheng and Small (2006) derive for a particular parameter upper

and lower bounds, L̃(P ) and Ũ(P ), respectively, under different assumptions. They further suggest using

the bootstrap for inference on [L̃(P ), Ũ(P )] in the following way. Denote by ℓ(α/2, P ) the α/2 quantile

of the distribution of L̃(P̂n) under P and by u(1 − α/2, P ) the 1 − α/2 quantile of the distribution of

Ũ(P̂n) under P . In terms of this notation, the proposed confidence region for [L̃(P ), Ũ(P )] is given by

[ℓ(α/2, P̂n), u(1 − α/2, P̂n)]. Because the functionals L̃(P ) and Ũ(P ) involve the maximum and minimum

over functionals of P , they are only directionally differentiable and not fully differentiable when the maximum

and minimum are attained at multiple functionals. Hence, it follows from Fang and Santos (2019) that the

bootstrap quantiles ℓ(α/2, P̂n) and u(1− α/2, P̂n) are not consistent for the population quantiles ℓ(α/2, P )

and u(1− α/2, P ) that justify the validity of the proposed confidence region.

Remark 4.5. It is possible to modify the test described above to test the null hypothesis that the model

is correctly specified in the sense that Q0(P,Q) ̸= ∅. In order to do so, let A0 and β0(P ) denote all but

the last two rows of A and β(P ). By arguing as in the proof of Lemma 4.1, it is possible to show that

the model is correctly specified if and only if A0x = β0(P ) for some x ≥ 0. The test described above can

therefore be adapted in a straightforward way to test the null hypothesis that the model is correctly specified.

Furthermore, in Appendix D, we show how to use a strategy like the one described in Remark 4.1 to derive

a set of analytical inequalities that hold if and only if Q0(P,Q) ̸= ∅.
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A Proof of Lemma 4.1

We begin by defining A. To this end, let M ≡ Y × D × Z and N ≡ Y |D| × D|Z|. We now define a matrix

A with |M| + 2 rows and |N | columns. In order to describe the matrix, index the first |M| rows of A by

(y, d, z) ∈ M and the columns of A by r = ((y(d) : d ∈ D), (d(z) ∈ Z)) ∈ N . The (y, d, z) × r element

of A is given by 1{y(d) = y, d(z) = d}; the (|M| + 1) × r element of A is given by 1{r ∈ R}; finally, the
(|M|+ 2)× r element of A is given by (g(r)− θ0)1{r ∈ R′}.

Suppose P ∈ P0. Then, θ0 ∈ Θ0(P,Q), so that there exists Q ∈ Q0(P,Q) such that θ0 = θ(Q). Recall

that Q ∈ Q0(P,Q) if and only if Q ∈ Q and P = QT−1. By assumption, Q ∈ Q, and hence satisfies both

Assumptions 2.1 and 2.2. Because Q satisfies Assumption 2.1 and P = QT−1,

pyd|z(P ) ≡ P{Y = y,D = d|Z = z} = Q{Y (d) = y,D(z) = d|Z = z} = Q{Y (d) = y,D(z) = d} . (14)

Let q be the column vector with |N | elements indexed by r, where the r element is q(r) = Q{R = r}. It

follows from (14) and the definition of A that the (y, d, z) row of Aq = β(P ) holds. Next, because Q satisfies

Assumption 2.2, ∑
r∈R

q(r) = 1 ,

and it follows from the definition of A that the |M|+1 row of Aq = β(P ) holds. Finally, because θ0 = θ(Q),

by the definition of the conditional expectation,

θ0 =
EQ[g(R)1{R ∈ R′}]

Q{R ∈ R′}
. (15)

Rearranging, we have EQ[(g(R)− θ0)1{R ∈ R′}] = 0, so that

∑
r∈R′

(g(r)− θ0)q(r) = 0 ,

and it follows from the definition of A that the |M| + 2 row of Aq = β(P ) holds. Finally, we show that

cl(P0) = P̃0 ≡ {P ∈ P : Ax = β(P ) for some x ≥ 0}. Note P0 ⊆ P̃0 and P̃0 is closed as a polyhedron

by Theorem 4.9 in Bertsimas and Tsitsiklis (1997), so cl(P0) ⊆ P̃0. On the other hand, consider P̃ ∈ P̃0.

By definition, there exists Q̃ ∈ Q such that P̃ = Q̃T−1 and EQ̃[g(R)1{R ∈ R′}] = θ0Q̃{R ∈ R′}. By

assumption, P0 is nonempty, so there exists P ∈ P0 such that P = QT−1 for some Q ∈ Q, Q{R ∈ R′} > 0,

and θ(Q) = θ0. For a sequence λn > 0 and λn ↓ 0, define Pn = λnP +(1−λn)P̃ and Qn = λnQ+(1−λn)Q̃.

Then, Pn = QnT
−1, Qn{R ∈ R′} > 0, and EQn [g(R)1{R ∈ R′}] = θ0Qn{R ∈ R′}, so θ(Qn) = θ0.

Therefore, Pn ∈ P0 for each n. Because Pn → P̃ in the usual topology as n → ∞, P̃ ∈ cl(P0), and the result

follows.
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B Details for Remark 4.1

In this section, we describe a method for deriving analytical expressions for Θ0(P,Q) as an interval whose

lower and upper endpoints are some functions of P , L(P ) and U(P ) respectively. If Q satisfies Assumption

2.1 and P = QT−1, then P{Z = z} = Q{Z = z} and (14) holds. Therefore, in what follows, we disregard

the distribution of Z under Q and identify Q with the distribution of R, and in turn with the column vector

q. Correspondingly, we identify P with p = {pyd|z : (y, d, z) ∈ M}. Let A0 and β0(P ) denote the first

|M|+ 1 rows of A and β(P ). Because we assume every Q ∈ Q satisfies Assumption 2.1,

Q0(P,Q) = {q : A0q = β0(P ), q ≥ 0} . (16)

B.1 When Q{R ∈ R′} is known or identified

Suppose Q{R ∈ R′} > 0 for all Q ∈ Q and is known or identified, so that it is a function of P for all P such

that Q0(P,Q) ̸= ∅. Denote such a function by a(P ). Recall q introduced in the proof of Lemma 4.1, which

is indexed by r such that q(r) = Q{R = r}. For all Q ∈ Q0(P,Q), θ(Q) = 1
a(P )

∑
r∈R′ g(r)q(r). Let c be a

column vector indexed by r, with the r element given by g(r)/a(P ). Here we suppress the dependence of c

on P for convenience. With the notation above,

Θ0(P,Q) = c′Q0(P,Q) .

Before proceeding, we show Θ0(P,Q) is a closed interval. Because Q0(P,Q) is a polyhedron (in standard

form), Corollary 2.5 in Bertsimas and Tsitsiklis (1997) implies Θ0(P,Q) = c′Q0(P,Q) is a polyhedron in R.
Furthermore, Q0(P,Q) is obviously bounded, so Θ0(P,Q) is also bounded. A bounded polyhedron in R is

simply the intersection of bounded closed intervals, so it is itself a bounded closed interval.

Next, note L(P ) is the solution to

min
q

c′q

subject to A0q = β0(P )

q ≥ 0 .

(17)

Because the feasible set Q0(P,Q) in (17) is in addition bounded, the optimal cost has to be finite, so it

follows from Theorem 2.8 in Bertsimas and Tsitsiklis (1997) that (17) has an optimal solution. Therefore,

by the strong duality theorem (Theorem 4.4, Bertsimas and Tsitsiklis, 1997), the optimal value in (17) is

the same as the optimal value of its dual:

max
r

β0(P )′r

subject to A′
0r ≤ c .

(18)

Note that in (18) the constraints do not involve P . It follows from the resolution theorem (Exercise 4.47,
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Bertsimas and Tsitsiklis, 1997) that the feasible set in (18) can be written as ∑
1≤j≤J

θjr
ex
j +

∑
1≤ℓ≤L

λℓr
ray
ℓ : θj ≥ 0,

∑
1≤j≤J

θj = 1, λℓ ≥ 0

 ,

where each rexj is a vertex and each rrayℓ spans an extreme ray. Because (18) cannot be unbounded, b′rrayℓ ≤ 0

for each ℓ, so the optimal solution of (18) must have λℓ = 0 for all ℓ. Therefore, it follows from Theorem 2.8

of Bertsimas and Tsitsiklis (1997) that the optimal value for (18) is

max
1≤j≤J

b′rexj .

The conclusion follows because the class of vertices rexj are determined by A0 and c and do not depend on

P . U(P ) can be obtained in a similar fashion.

B.2 When Q{R ∈ R′} is partially identified

Suppose now Q{R ∈ R′} is not point identified. In this case, Θ0(P,Q) is not necessarily a closed interval,

since the set {Q : Q ∈ Q0(P,Q), Q{R ∈ R′} > 0} is not necessarily closed, but the latter remains a

connected set. Recall (15) that

θ(Q) =
EQ[g(R)1{R ∈ R′}]

Q{R ∈ R′}
,

so θ(Q) is a continuous function of Q whenever Q{R ∈ R′} > 0. As a result, the identified set Θ0(P,Q) ≡
{θ(Q) : Q ∈ Q0(P,Q), Q{R ∈ R′} > 0} as the image of a continuous function on a connected set is also

connected. Since Θ0(P,Q) ⊆ R, it is an interval (despite not necessarily closed). The lower endpoint of it,

L(P ), can be obtained by solving the optimization problem

L(P ) = inf
Q∈Q0(P,Q)
Q{R∈R′}>0

EQ[g(R)1{R ∈ R′}]
Q{R ∈ R′}

,

and similarly for the upper endpoint. The above problem can be written as the following two-step optimiza-

tion problem which is easier to analyze:

inf
Q∈Q0(P,Q)
Q{R∈R′}>0

EQ[g(R)1{R ∈ R′}]
Q{R ∈ R′}

⇐⇒ inf
π∈Π(R′,P,Q)\{0}

{
inf

Q∈Q0(P,Q)∩∆(π)

EQ[g(R)1{R ∈ R′}]
π

}

⇐⇒ inf
π∈Π(R′,P,Q)\{0}

1

π

{
inf

Q∈Q0(P,Q)∩∆(π)
EQ[g(R)1{R ∈ R′}]

}
,

where for any π ∈ [0, 1], we define

∆(π) ≡ {Q ∈ Q : π = Q{R ∈ R′}} ,

and

Π(R′, P,Q) ≡ {Q{R ∈ R′} : Q ∈ Q0(P,Q)} , (19)
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as the identified set for Q{R ∈ R′}. Solving for Π(R′, P,Q), however, is a special case of Section B.1

by specifying R′ = R and g(R) = 1{R ∈ R′} in θ(Q) = EQ[g(R)|R ∈ R′], so that Q{R ∈ R′} = 1

by Assumption 2.2. Therefore, Π(R′, P,Q) is a closed interval whose lower (resp. upper) endpoint is the

maximum (resp. minimum) of a finite number of linear functions of (pyd|z(P )).

For the inner minimization problem, Q0(P,Q) ∩∆(π) is characterized by

Q0(P,Q) ∩∆(π) = {q : A(R′)q = β(P, π), q ≥ 0} ,

where A(R′) is a (|M|+ 2)× |N | matrix, whose first |M|+ 1 rows are the same as A0, and the last row is

given by 1{r ∈ R′}, and β(P, π) ≡ ((pyd|z(P ) : (y, d, z) ∈ M, 1, π)′. Using the same analysis in Section B.1,

inf
Q∈Q0(P,Q)∩∆(π)

EQ[g(R)1{R ∈ R′}]

is given by the maximum of a finite number of linear functions of (pyd|z(P ))∪ (π), denoted as L(P, π). As a

result, L(P ) has the following form:

L(P ) = inf
π∈Π(R′,P,Q)\{0}

1

π
L(P, π) , (20)

and U(P ) can be obtained in a similar fashion.

C Details for Remark 4.2

The (multi-step) linear programming approach in Appendix B.2 is procedurally similar to the approach to

bound the average causal effect within principal strata in Cheng and Small (2006) (hereafter CS). We provide

a detailed comparison of our approach with that in CS. In particular, we show that the CS approach may

not lead to a sharp bound both by formula and a numerical example, and provide a way to correct their

approach as an application of our procedure.

Consider the RCT with one-sided noncompliance setting with D = Z = {0, 1, 2} and Y = {0, 1}, which
is the same as the setup in CS with their “Monotonicity I” assumption. Define the strata

R′
0ij = {(y(0), y(1), y(2), d(0), d(1), d(2)) ∈ R : (d(0), d(1), d(2)) = (0, i, j)} ,

for i ∈ {0, 1} and j ∈ {0, 2}, and π0ij = Q{R ∈ R′
0ij}. Then

π0ij =
∑
r∈R

q(r)1{r ∈ R′
0ij} , (21)

where we write q(r) = Q{R = r}. As in CS, we also write pd|z = P{D = d|Z = Z} for d ∈ D and z ∈ Z.

The working example in this section will be θ = EQ[Y (1)− Y (0)|R ∈ R′
012], but similar analysis extends to

other parameters of interest.
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CS step 1. The first step in CS is to minimize and maximize each π0ij under the following constraints:

p1|1 = π012 + π010

p0|1 = π002 + π000

p2|2 = π002 + π012

p0|2 = π000 + π010

1 = π012 + π010 + π002 + π000

0 ≤ π012, π010, π002, π000 ≤ 1 .

(22)

Note that pd|z = p0d|z + p1d|z, and write π0ij in terms of q(r) using (21). Then we see that {Q :

Q satisfies (22)} ⊆ {Q : Q ∈ Q0(P,Q)}. As a result, let Π̃(R′
012, P,Q) be the interval whose lower (resp.

upper) endpoint is the solution of minimizing (resp. maximizing) π0ij subject to Q satisfies (22), we have

Π̃(R′
012, P,Q) ⊇ Π(R′

012, P,Q), for Π(R′, P,Q) defined in (19). Indeed, Π̃(R′
012, P,Q) is given by CS as

Π̃(R′
012, P,Q) =

[
max{0, p1|1 − p0|2}, min{p1|1, p2|2}

]
, (23)

while applying the procedure in Remark 4.1 on R′
012, we get

Π(R′
012, P,Q) =

max


0

p01|1 + p11|1 − (p00|2 + p10|2)

p10|0 − p10|1 − p10|2

1− p00|1 − p00|2 − p10|0

 , min


p01|1 + p11|1

p02|2 + p12|2

1− p00|1 − p10|2

1− p10|1 − p00|2



 , (24)

from which it’s obvious that Π̃(R′
012, P,Q) ⊇ Π(R′

012, P,Q). As we will show later, there exists a P such

that Q0(P,Q) ̸= ∅ under which Π̃(R′
012, P,Q) ⫌ Π(R′

012, P,Q). One can verify that the same holds for

other Π̃(R′
0ij , P,Q) in Section 3.1.1 of CS.

CS step 2. The second step in CS is to bound EQ[Y (d)|R ∈ R′
0ij ] for d ∈ D assuming π0ij is known.

Specifically, they minimize and maximize EQ[Y (d)|R ∈ R′
0ij ] subject to the following constraints:

EP [Y |D = 1, Z = 1] =
π012

π012 + π010
EQ[Y (1)|R ∈ R′

012] +
π010

π012 + π010
EQ[Y (1)|R ∈ R′

010]

EP [Y |D = 2, Z = 2] =
π012

π012 + π002
EQ[Y (2)|R ∈ R′

012] +
π002

π012 + π002
EQ[Y (2)|R ∈ R′

002]

EP [Y |D = 0, Z = 1] =
π002

π002 + π000
EQ[Y (0)|R ∈ R′

002] +
π000

π002 + π000
EQ[Y (0)|R ∈ R′

000]

EP [Y |D = 0, Z = 2] =
π010

π010 + π000
EQ[Y (0)|R ∈ R′

010] +
π000

π010 + π000
EQ[Y (0)|R ∈ R′

000]

EP [Y |D = 0, Z = 0] = π012EQ[Y (0)|R ∈ R′
012] + π010EQ[Y (0)|R ∈ R′

010]

+ π002EQ[Y (0)|R ∈ R′
002] + π000EQ[Y (0)|R ∈ R′

000]

0 ≤ EQ[Y (d)|R ∈ R′
0ij ] ≤ 1 for all d ∈ D and i, j .

(25)
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The constraints in (25) can be reduced to a form comparable to Q ∈ Q0(P,Q) ∩∆(π012). Note that

EP [Y |D = d, Z = d] = P{Y = 1|D = d, Z = z} =
p1d|z

pd|z
=

p1d|z

p0d|z + p1d|z
,

and π012 + π010 = p1|1 = p01|1 + p11|1. Also, write EQ[Y (1)|R ∈ R′
012] = EQ[Y (1)1{R ∈ R′

012}]/π012, the

first equation in (25) can be written as

p11|1

p01|1 + p11|1
=

EQ[Y (1)1{R ∈ R′
012}]

p01|1 + p11|1
+

EQ[Y (1)1{R ∈ R′
010}]

p01|1 + p11|1

⇐⇒ p11|1 =
∑
r∈R

y(1)q(r)1{r ∈ R′
012 ∪R′

010} .

⇐⇒ p11|1 =
∑
r∈R

1{y(1) = 1, d(1) = 1}q(r) .

where we write r = ((y(0), y(1), y(2), d(0), d(1), d(2)). Do the same to all equations in (25), use
∑

r∈R q(r) = 1

and
∑

y,d pyd|z = 1 for all z ∈ Z, we see that {Q : Q satisfies (25)} = {Q ∈ Q0(P,Q) ∩∆(π012)}. Under the

constraints in (25), CS derive the following bound for EQ[Y (1)|R ∈ R′
012] given π012:

Ĩ1|012(P, π012) = [L̃1|012(P, π012), Ũ1|012(P, π012)] =

[
max

{
0, 1−

1− p1|11

π012/p1|1

}
, min

{
1,

p1|11

π012/p1|1

}]
, (26)

where p1|zd = P{Y = 1|D = d, Z = z}, and L̃1|012(P, π012) (resp. Ũ1|012(P, π012)) is the minimum (resp.

maximum) of EQ[Y (1)|R ∈ R′
012] subject to (25). Since {Q : Q satisfies (25)} = {Q ∈ Q0(P,Q)∩∆(π012)},

Ĩ1|012(P, π012) is identical to our results from the inner optimization problem in Remark 4.1 after multiplying

π012. In fact, applying our results on g(R) = Y (1) with R′ = R′
012, the two endpoints from the inner

optimization problem are

I1|012(P, π) = [L1|012(P, π), U1|012(P, π)] =
[
max

{
0, π − p01|1

}
, min

{
π, p11|1

}]
,

and (26) can be written as

Ĩ1|012(P, π012) =

[
max

{
0, 1−

1− p1|11

π012/p1|1

}
, min

{
1,

p1|11

π012/p1|1

}]
=

[
max

{
0, 1−

1− p11|1/(p01|1 + p11|1)

π012/(p01|1 + p11|1)

}
, min

{
1,

p11|1/(p01|1 + p11|1)

π012/(p01|1 + p11|1)

}]
=

[
max

{
0, 1−

p01|1

π012

}
, min

{
1,

p11|1

π012

}]
= π012I1|012(P, π012) .

The same result holds for other EQ[Y (d)|R ∈ R′
0ij ].

CS step 3. The final step in CS is to combine the bounds in (23) and (26) to bound EQ[Y (d1)−Y (d2)|R ∈
R′

0ij ]. Specifically, the bound for EQ[Y (1)− Y (0)|R ∈ R′
012] is given by [L̃(P ), Ũ(P )] where

L̃(P ) = inf
π012∈Π̃(R′

012,P,Q)\{0}

{
L̃1|012(P, π012)− Ũ0|012(P, π012)

}
,
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Ũ(P ) = sup
π012∈Π̃(R′

012,P,Q)\{0}

{
Ũ1|012(P, π012)− L̃0|012(P, π012)

}
.

This step uses the crude bound that given π012,

L̃1|012(P, π012)− Ũ0|012(P, π012) ≤ EQ[Y (1)|R ∈ R′
012]− EQ[Y (0)|R ∈ R′

012] ≤ Ũ1|012(P, π012)− L̃0|012(P, π012) .

It turns out that by specifying g(R) = Y (1)−Y (0) with R′ = R′
012 in our approach, the two solutions from the

inner optimization is indeed L10|012(P, π012) = π012(L̃1|012(P, π012)− Ũ0|012(P, π012)) and U10|012(P, π012) =

π012(Ũ1|012(P, π012) − L̃0|012(P, π012)). It is interesting to study when one gets such a “separable” bound

that it suffices to consider bounds for each EQ[Y (j)|R ∈ R′] in order to study EQ[Y (j1) − Y (j2)|R ∈ R′],

but it is beyond the scope of the current paper. The final step involves a one-dimensional grid search over

π012 ∈ Π̃(R′
012, P,Q), which is the same as the outer optimization in (20).

Summary. Putting the three steps together, we see that CS derive the tight bound of EQ[Yj1 − Yj2 |R ∈
R′

0ij ] given π0ij in their step 2, even if they use a crude bound for the difference of EQ[Yj1 |R ∈ R′
0ij ]

and EQ[Yj2 |R ∈ R′
0ij ]. Nevertheless, their bound for the conditional probability π0ij = Q{R ∈ R′

0ij},
Π̃(R′

0ij , P,Q), is loose compared to Π(R′
0ij , P,Q). As a result, their bounds for EQ[Yj1 − Yj2 |R ∈ R′

0ij ] are

not sharp in general. Moreover, if in their approach we use Π(R′
0ij , P,Q) as the bound for π0ij in place of

Π̃(R′
0ij , P,Q), we would reach the same bound for the conditional ATE. We illustrate these two points using

a numerical example below.

p00|0 p10|0
0.764 0.236

p00|1 p10|1 p01|1 p11|1
0.412 0.107 0.301 0.180

p00|2 p10|2 p02|2 p12|2
0.117 0.169 0.475 0.239

Table 1: Distribution P for Appendix C.

q(000, 000) q(000, 010) q(000, 002) q(000, 012)
0.002 0.002 0.017 0.025

q(001, 000) q(001, 010) q(001, 002) q(001, 012)
0.002 0.002 0.002 0.195

q(010, 000) q(010, 010) q(010, 002) q(010, 012)
0.101 0.002 0.272 0.120

q(011, 000) q(011, 010) q(011, 002) q(011, 012)
0.002 0.004 0.014 0.002

q(100, 000) q(100, 010) q(100, 002) q(100, 012)
0.002 0.002 0.022 0.011

q(101, 000) q(101, 010) q(101, 002) q(101, 012)
0.034 0.062 0.015 0.002

q(110, 000) q(110, 010) q(110, 002) q(110, 012)
0.002 0.002 0.006 0.002

q(111, 000) q(111, 010) q(111, 002) q(111, 012)
0.024 0.041 0.002 0.007

Table 2: Distribution Q for Appendix C.
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A numerical example. Consider the P distribution in Table 1 and the Q distribution in Table 2, where

we write q(y0y1y2, d0d1d2) = Q{Y (d) = yd, D(z) = dz, (d, z) ∈ D × Z} and omit any q(·) = 0. One can

check that Q ∈ Q and P = QT−1 so that Q0(P,Q) ̸= ∅. Moreover, Q{R ∈ R} = 1 for R defined in Example

3.1. We are interested in EQ[Y (1)− Y (0)|R ∈ R′
012]. Firstly Q{R ∈ R′

012} > 0. Under this distribution, we

can calculate that Π̃(R′
012, P,Q) = [0.195, 0.481], while Π(R′

012, P,Q) = [0.235, 0.419], as shown in the black

and blue lines in Figure 1. The green and red lines are the upper and lower bound of EQ[Y (1)− Y (0)|R ∈
R′

012] as a function of π012, i.e., Ũ1|012(P, π012) − L̃0|012(P, π012) and L̃1|012(P, π012) − Ũ0|012(P, π012), or

equivalently U10|012(P, π012)/π012 and L10|012(P, π012)/π012. As a result, if we use Π̃(R′
012, P,Q) to do the

outer optimization, we get a bound [−0.219, 0.923], which is the minimum of the red line and maximum of

the green line within the two black boundaries. Using Π(R′
012, P,Q) for the outer optimization, however,

results in a bound [−0.219, 0.766] as the minimum of the red line and the maximum of the green line within

the two blue boundaries. It is also interesting to note that the bound for E[Y (1)−Y (0)|R ∈ R′
012] given π012

is not always valid when π012 ∈ Π̃(R′
012, P,Q). The green line actually goes below the red line to the right

of the plot, though it is valid when π012 ∈ Π(R′
012, P,Q).
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−
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0

Simulated data

π012

E
[ Y

1
−

Y
0  

| 0
12

,  
π 0

12
 ]

−0.219

0.766

0.923

0.195 0.481
0.235 0.419

lower bd
upper bd
C−S π012 bd
tight π012 bd
tight ATE bd

Figure 1: Visualization of EQ[Y (1)− Y (0)|R ∈ R′
012] given π012 under the simulated distribution in Table 1.

D Details for Remark 4.5

In this section, we discuss a method to obtain sharp testable restrictions of Q in terms of analytical in-

equalities. In what follows, we will make heavy use of the fact that a nonempty bounded polyhedron can

be represented in two ways. Recall from Definition 2.1 of Bertsimas and Tsitsiklis (1997) that a polyhedron

in Rk is a set {x ∈ Rk : Ax ≤ b}, known as the H-representation of a polyhedron. If the polyhedron is

nonempty and bounded, then Theorem 2.9 of Bertsimas and Tsitsiklis (1997) implies that it can equiva-

lently be represented as the convex hull of its (finite number of) vertices, known as the V -representation of

a polyhedron.
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As in Appendix B, we identify Q with the column vector q = (q(r) : r ∈ R), and P with p = {pyd|z :

(y, d, z) ∈ M}. Further let A1 denote the first |M| rows of A0 and let a0 denote the last row of A0.

Correspondingly, we note

Q = {q : a′0q = 1, q ≥ 0} ,

which is a bounded polyhedron in H-representation. Next, let P(Q) = {P : P = QT−1, Q ∈ Q}, and note

P(Q) = A1Q. P(Q) is obviously a bounded polyhedron and is nonempty as long as Q is nonempty. In that

case, Theorem 2.9 of Bertsimas and Tsitsiklis (1997) implies it is the convex hull of its (finite number of)

vertices.

The previous discussion leads to the following algorithm for obtaining P(Q) in terms of inequalities, i.e.,

its H-representation. For a given polyhedron, we can compute one representation from the other using the

mpt3 package in MATLAB. To obtain the H-representation of P(Q), we use the following algorithm:

Algorithm D.1.

Step 1: Collect the set of all vertices of Q, denoted by V = {Vi : 1 ≤ i ≤ n}.

Step 2: Compute A1V = {A1Vi : 1 ≤ i ≤ n}.

Step 3: From Lemma D.1, define A1Q = co(A1V ).

Step 4: Obtain the H representation of A1Q.

In the algorithm, we have used the following lemma that allows us to define P(Q) through the vertices

of Q:

Lemma D.1. Suppose Q is a nonempty bounded polyhedron and V is the set of vertices of Q′. Then,

A1Q = co(A1V ).

Proof. We first show co(A1V ) ⊆ A1Q
′. Indeed, each P ∈ co(A1V ) could be written as

∑
1≤i≤n λiA1Vi =

A1

∑
1≤i≤n λiVi where λi ≥ 0 for all i and

∑
i λi = 1, but

∑
1≤i≤n λiVi ∈ Q since Q is a polyhedron and

hence convex. To show A1Q ⊆ co(A1V ), fix Q ∈ Q. Because Q = co(V ), Q =
∑

1≤i≤n λiVi, where λi ≥ 0

for all i and
∑

i λi = 1, so A1Q =
∑

1≤i≤n λiA1Vi ∈ co(A1V ).

19



References

Angrist, J., Lang, D. and Oreopoulos, P. (2009). Incentives and services for college achievement:

Evidence from a randomized trial. American Economic Journal: Applied Economics, 1 136–63.

Angrist, J. D. and Imbens, G. W. (1995). Two-stage least squares estimation of average causal effects

in models with variable treatment intensity. Journal of the American statistical Association, 90 431–442.

Bai, Y., Huang, S., Moon, S., Shaikh, A. and Vytlacil, E. J. (2024). On the identifying power of

generalized monotonicity for average treatment effects. Tech. rep., National Bureau of Economic Research.

Bai, Y., Santos, A. and Shaikh, A. M. (2022). On testing systems of linear inequalities with known

coefficients. Tech. rep.

Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance.

Journal of the American Statistical Association, 92 1171–1176.

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization, vol. 6.

Bhattacharya, J., Shaikh, A. M. and Vytlacil, E. (2008). Treatment Effect Bounds under Mono-

tonicity Assumptions: An Application to Swan-Ganz Catheterization. American Economic Review, 98

351–356. URL https://www.aeaweb.org/articles?id=10.1257/aer.98.2.351.

Bhattacharya, J., Shaikh, A. M. and Vytlacil, E. (2012). Treatment effect bounds: An application to

Swan–Ganz catheterization. Journal of Econometrics, 168 223–243. URL https://www.sciencedirect.

com/science/article/pii/S0304407612000024.

Cheng, J. and Small, D. S. (2006). Bounds on causal effects in three-arm trials with non-compliance.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 815–836.

Fang, Z. and Santos, A. (2019). Inference on directionally differentiable functions. The Review of Economic

Studies, 86 377–412.

Fang, Z., Santos, A., Shaikh, A. M. and Torgovitsky, A. (2023). Inference for large-scale linear

systems with known coefficients. Econometrica, 91 299–327.

Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics, 58

21–29.

Gabriel, E. E., Sachs, M. C. and Jensen, A. K. (2024). Sharp symbolic nonparametric bounds for

measures of benefit in observational and imperfect randomized studies with ordinal outcomes. Biometrika

asae020.

Heckman, J. J. and Pinto, R. (2018). Unordered monotonicity. Econometrica, 86 1–35.

Heckman, J. J., Smith, J. and Clements, N. (1997). Making the most out of programme evaluations

and social experiments: Accounting for heterogeneity in programme impacts. The Review of Economic

Studies, 64 487–535.

20

https://www.aeaweb.org/articles?id=10.1257/aer.98.2.351
https://www.sciencedirect.com/science/article/pii/S0304407612000024
https://www.sciencedirect.com/science/article/pii/S0304407612000024


Heckman, J. J. and Smith, J. A. (1998). Evaluating the welfare state. ECONOMETRIC SOCIETY

MONOGRAPHS, 16 241–318.

Huang, E. J., Fang, E. X., Hanley, D. F. and Rosenblum, M. (2019). Constructing a confidence

interval for the fraction who benefit from treatment, using randomized trial data. Biometrics, 75 1228–

1239.

Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average treatment effects.

Econometrica, 62 467–475.

Kirkeboen, L. J., Leuven, E. and Mogstad, M. (2016). Field of Study, Earnings, and Self-Selection.

The Quarterly Journal of Economics, 131 1057–1111. URL https://doi.org/10.1093/qje/qjw019.

Kline, P. and Walters, C. R. (2016). Evaluating public programs with close substitutes: The case of

Head Start. The Quarterly Journal of Economics, 131 1795–1848.

Lu, J., Ding, P. and Dasgupta, T. (2018). Treatment effects on ordinal outcomes: Causal estimands and

sharp bounds. Journal of Educational and Behavioral Statistics, 43 540–567.

Machado, C., Shaikh, A. M. and Vytlacil, E. J. (2019). Instrumental variables and the sign of the

average treatment effect. Journal of Econometrics.

Manski, C. F. (1997). Monotone treatment response. Econometrica: Journal of the Econometric Society

1311–1334.

Manski, C. F. and Pepper, J. V. (1998). Monotone instrumental variables with an application to the

returns to schooling.

Masten, M. A. and Poirier, A. (2020). Inference on breakdown frontiers. Quantitative Economics, 11

41–111.

Noack, C. (2021). Sensitivity of late estimates to violations of the monotonicity assumption. arXiv preprint

arXiv:2106.06421.

Vytlacil, E. (2006). Ordered discrete-choice selection models and local average treatment effect assump-

tions: Equivalence, nonequivalence, and representation results. The Review of Economics and Statistics,

88 578–581.

21

https://doi.org/10.1093/qje/qjw019

	Introduction
	Setup and Notation
	Examples
	Inference
	Proof of Lemma 4.1
	Details for Remark 4.1
	When Q {R R'} is known or identified
	When Q {R R'} is partially identified

	Details for Remark 4.2
	Details for Remark 4.5

