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Abstract

In this paper, we revisit the problem considered in Fang et al. (2020) of testing whether there

exists a non-negative solution to a possibly under-determined system of linear equations with

known coefficients. We propose two alternative methods for this testing problem – one based on

subsampling and a second which is closely related to the two-step method for testing moment

inequalities developed in Romano et al. (2014) – and provide weak conditions under which they

control size uniformly over a large class of possible distributions of the data. In contrast to Fang

et al. (2020), however, our analysis does not accommodate high-dimensional settings in which

the dimension of p and/or d grow with the sample size n.
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1 Introduction

Let X1, . . . , Xn be i.i.d. ∼ P ∈ P on Rk and consider testing the null hypothesis

H0 : P ∈ P0 versus H1 : P ∈ P \P0 , (1)

where

P0 := {P ∈ P : ∃ x ≥ 0 s.t. Ax = β(P )} .

Here, P is a large class of possible distributions for the observed data, β(P ) ∈ Rd is an unknown

parameter and A is a known p×dmatrix. This hypothesis testing problem was previously considered

in Fang et al. (2020), who additionally provide numerous examples where this testing problem arises

naturally. See, in particular, Section 2 of their paper. In this paper, we develop two alternative

methods for this testing problem: one based on subsampling and a second which is a closely-related

to the two-step method for testing moment inequalities developed in Romano et al. (2014). For

each testing procedure, we provide weak conditions under which the test controls size uniformly

over P.

Our testing procedures differ not only in how the critical value is constructed, but also rely on

a different test statistic that does not employ the alternative geometric characterization of the null

hypothesis developed in Fang et al. (2020). Specifically, we consider the “natural” choice of test

statistic given by

Tn := inf
x≥0

√
n|Ax− β̂n| , (2)

where β̂n = β̂n(X1, . . . , Xn) is a suitable estimator of β(P ). We emphasize, however, that our results

do not accommodate high-dimensional settings in which the dimension of p and/or d grow with

the sample size n. We leave the development of such results for future work, but emphasize that

both of the tests we propose are computationally very attractive: each requires simply repeatedly

solving problems like those on the right-hand side of (2). As noted by Fang et al. (2020), this

feature is especially important in many of the applications they describe.

In addition to Fang et al. (2020), the problem of testing (1) has been previously considered by

Kitamura and Stoye (2018) in the context of testing the validity of a random utility model. In

contrast to our tests below, their test requires certain conditions on A that can be violated in some

of the examples described in Fang et al. (2020). Our paper is also broadly related to the literature on

sub-vector inference in moment inequality models and shape restrictions. See, for example, Romano

and Shaikh (2008), Bugni et al. (2017), Kaido et al. (2019), Gandhi et al. (2019), Chernozhukov

et al. (2015), Zhu (2020) and Fang and Seo (2021). These testing procedures are sufficiently general
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to accommodate testing (1), but do not exploit the linear structure in the null hypothesis and, as

a result, are computationally less tractable and/or rely on more demanding assumptions than the

ones in our analysis below. Notable exceptions include Andrews et al. (2019) and Cox and Shi

(2019), who propose methods for sub-vector inference in certain conditional moment inequality

models with some linear structure that can be also be used to test (1). We leave a more detailed

comparison of the tests proposed in this paper with these tests as well as with the procedure in

Fang et al. (2020) for future work.

The remainder of our paper is organized as follows. In Section 2, we describe our subsampling-

based test and provide conditions under which it controls size uniformly over P. In Section 3, we

describe our two-step test and likewise provide conditions under which it controls size uniformly

over P. Our conditions are formulated in a high-level fashion that accommodates a broad variety

of possible applications, but, for each test, we discuss more primitive conditions under which they

may be verified in the leading example where β(P ) is a mean or sufficiently “mean-like.”

2 Subsampling

In this section, we describe our subsampling-based test. To this end, define

Ln(t) :=
1

Nn

∑
1≤j≤Nn

I{ inf
x≥0

√
b|Ax− β̂b,j | ≤ t} ,

where Nn =
(
n
b

)
, j indexes the Nn subsets of X1, . . . , Xn of size b, and β̂b,j is β̂b evaluated at the

jth such subset of data. The subsampling-based test we consider is given by

φsubn := I{Tn > L−1n (1− α)} .

In order to state the following theorem concerning the behavior of this test, we require some

additional notation. To this end, let C be the set of all convex subsets of Rd. For C ∈ C, define

Jn(C, P ) := P{
√
n(β̂n − β(P )) ∈ C} . (3)

With this notation, we have the following theorem:

Theorem 2.1. Let b = bn →∞ and b/n→ 0. Suppose

sup
P∈P

sup
C∈C
|Jn(C, P )− Jb(C, P )| → 0 . (4)
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Then,

lim sup
n→∞

sup
P∈P0

EP [φsubn ] ≤ α .

Proof: Define X0(P ) := {x ≥ 0 : Ax = β(P )} and, for P ∈ P0, let x0(P ) ∈ X0(P ). (Note that

the dependence of x0(P ) on P is intended to reflect the fact that it is an element of X0(P ), which

is non-empty for P ∈ P0. One could write x0(X0(P )) instead.) For c ∈ Rp and t ∈ R, define

A(c, t) :=
⋃
y≥c

Bt(Ay) ,

where Bt(Ay) is the closed ball of radius t with center Ay. Here, it is understood that Bt(Ay) :=

{Ay} for t < 0. Note that A(c, t) = Bt(
⋃

y≥cAy) and is therefore convex.

Next, for any P ∈ P0, note that

inf
x≥0

√
n|Ax− β̂n| = inf

x≥0

√
n|A(x− x0(P ))− (β̂n − β(P ))|

= inf
y≥−

√
nx0(P )

|Ay −
√
n(β̂n − β(P ))|

≤ inf
y≥−

√
bx0(P )

|Ay −
√
n(β̂n − β(P ))|

where in the first equality we use the fact that Ax0(P ) = β(P ) since x0(P ) ∈ X0(P ), the second

equality uses the substitution y =
√
n(x− x0(P )), and the inequality uses the fact that b ≤ n and

x0(P ) ≥ 0 imply that −
√
bx0(P ) ≥ −

√
nx0(P ). Similarly,

inf
x≥0

√
b|Ax− β̂b| = inf

x≥0

√
b|A(x− x0(P ))− (β̂b − β(P ))|

= inf
y≥−

√
bx0(P )

|Ay −
√
b(β̂b − β(P ))| .

It follows that

Kn(t, P ) := P{Tn ≤ t}

= P{ inf
y≥−

√
nx0(P )

|Ay −
√
n(β̂n − β(P ))| ≤ t}

≥ P{ inf
y≥−

√
bx0(P )

|Ay −
√
n(β̂n − β(P ))| ≤ t}

= P{
√
n(β̂n − β(P )) ∈ A(−

√
bx0(P ), t)} .
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and, likewise, that

Kb(t, P ) := P{Tb ≤ t}

= P{
√
b(β̂b − β(P )) ∈ A(−

√
bx0(P ), t)} .

Hence,

sup
P∈P

sup
t∈R
{Kb(t, P )−Kn(t, P )}

≤ sup
P∈P

sup
t∈R
{P{
√
b(β̂b − β(P )) ∈ A(−

√
bx0(P ), t)} − P{

√
n(β̂n − β(P )) ∈ A(−

√
bx0(P ), t)}}

≤ sup
P∈P

sup
C∈C
|Jb(C, P )− Jn(C, P )| → 0 ,

where the convergence to zero follows by assumption. The desired result thus follows from Lemma

A.1 in Romano and Shaikh (2012).

Remark 2.1. An inspection of the proof reveals that the requirement (4) is stronger than is

required for the theorem: the set C can be replaced with the smaller class {A(c, t) : c ∈ Rp, t ∈ R}
without changing the argument.

Remark 2.2. The requirement (4) can be readily verified in the case where β(P ) is a mean and β̂n

is the corresponding sample average under weak assumptions on P. All that is required is a weak

uniform integrability requirement. See, for example, Romano and Shaikh (2008). This requirement

can also be verified for the case where β(P ) is sufficiently “mean-like.” We leave the development

of such results for future work.

Remark 2.3. While our methodology does not require β̂n to be non-degenerate, in some cases,

it may be desireable to incorporate additional deterministic constraints into the null hypothsis

differently. To this end, consider testing (1) with P0 replaced with

P̃0 := {P ∈ P : ∃x ≥ 0 s.t. Bx = m and Ax = β(P )} , (5)

where B is a known r×d-dimensional matrix and m is a r-dimensional vector of constants. Consider

the test statistic

T̃n := inf
x≥0:Bx=m

√
n|Ax− β̂n| . (6)

Define

L̃n(t) :=
1

Nn

∑
1≤j≤Nn

I{ inf
x≥0:Bx=m

√
b|Ax− β̂b,j | ≤ t} .

The same argument employed in establishing Theorem 2.1 shows that the test of (5) that rejects

when T̃n exceeds L̃−1n (1− α) controls size uniformly over P under (4).

4



3 Two-Step Method

The above calculations suggest a way of constructing a “two-step” critical value with which to

compare Tn in the spirit of Romano et al. (2014). To this end, recall from the proof of Theorem

2.1 that X0(P ) := {x ≥ 0 : Ax = β(P )} and, for P ∈ P0, x0(P ) ∈ X0(P ). Denote by Cn(1 − γ) a

confidence set for x0(P ), by which we mean a random set satisfying

lim inf
n→∞

inf
P∈P

P{x0(P ) ∈ Cn(1− γ)} ≥ 1− γ . (7)

For instance, if
√
n(β̂n − β(P ))

d→ N(0,Σ(P )) as n→∞ with Σ(P ) invertible, then we may define

Cn(1− γ) := {x ≥ 0 : n(Ax− β̂n)′Σ̂−1n (Ax− β̂n) ≤ c} ,

where c is the 1 − γ quantile of the χ2
d distribution and Σ̂n is a suitable estimator of Σ(P ). For

this choice of Cn(1 − γ), it is straightforward (by computing its projection onto each axis in Rd)

to compute a “greatest lower bound” w.r.t. the usual partial order on Rd. Denote such a point in

general by xn. For x̃ ∈ Rd, define

Kn(t, x̃, P ) := P{ inf
y≥−x̃

|Ay −
√
n(β̂n − β(P ))| ≤ t} .

Using this notation, our two-step test is given by

φtwo−stepn := I{Tn > K−1n (1− α+ γ, xn, P̂n)} .

The following theorem describes its behavior under (7) and an additional high-level assumption.

We discuss these assumptions in the subsequent remarks.

Theorem 3.1. Suppose that (7) holds and

lim inf
n→∞

inf
P∈P0

P{Tn ≤ K−1n (1− α+ γ, x0(P ), P̂n)} ≥ 1− α+ γ . (8)

Then,

lim sup
n→∞

sup
P∈P0

EP [φtwo−stepn ] ≤ α .

Proof: Let P ∈ P0. Define En := {x0(P ) ∈ Cn(1 − γ)}. On the event En, we have that

−xn ≥ −x0(P ), so we have that Kn(t, x0(P ), P ) ≥ Kn(t, xn, P ) for all t ∈ R and any P (including
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P̂n). Thus, with probability one, we have that

K−1n (1− α+ γ, x0(P ), P̂n) ≤ K−1n (1− α+ γ, xn, P̂n) . (9)

Next, for any P ∈ P0, note that

P{Tn > K−1n (1− α+ γ, xn, P̂n)}

= P{Tn > K−1n (1− α+ γ, xn, P̂n) ∩ En}+ P{Tn > K−1n (1− α+ γ, xn, P̂n) ∩ Ec
n}

≤ P{Tn > K−1n (1− α+ γ, x0(P ), P̂n) ∩ En}+ P{Tn > K−1n (1− α+ γ, x0(P ), P̂n) ∩ Ec
n}

≤ P{Tn > K−1n (1− α+ γ, x0(P ), P̂n)}+ P{Ec
n} ,

where the first equality follows by inspection, the second exploits (9), and the third follows from

Bonferroni’s inequality. The desired conclusion now follows immediately from (7) and (8).

Remark 3.1. The two requirements (7) and (8) can be verified using arguments in, for example,

Romano and Shaikh (2012) and Romano et al. (2014). The second of these requirements may look

particularly high-level and therefore merits further discussion. It is useful to recall, however, from

the proof of Theorem 2.1 that

Tn = inf
y≥−

√
nx0(P )

|Ay −
√
n(β̂n − β(P ))| .

and thus P{Tn ≤ t} = P{
√
n(β̂n − β(P )) ∈ A(−

√
nx0(P ), t)}, where A(−

√
nx0(P ), t) is defined in

the proof of Theorem 2.1. Hence, the assumption may be viewed as requiring that the bootstrap

approximation to the distribution of
√
n(β̂n−β(P )) hold uniformly over a rich enough class of sets

(e.g., all convex sets) and over P ∈ P. Indeed, it suffices to assume that for every ε > 0

sup
P∈P

P{sup
C∈C
|Jn(C, P )− Jn(C, P̂n)| > ε} → 0 ,

where, as in Section 2, C is the set of all convex subsets of Rd and Jn(C, P ) is defined as in (3). As

in the preceding section, this condition may be readily verified in the case where β(P ) is a mean

and β̂n is the corresponding sample average under a weak uniform integrability assumption on P.

It can also be verified for the case where β(P ) is sufficiently “mean-like.” We leave the development

of such results for future work.

Remark 3.2. Different choices of Cn(1 − γ) may have substantial impact on the power of the

test described in this section. While we describe one specific “elliptical” construction, it may be

desirable to employ a “rectangular” confidence region as in Romano et al. (2014) and Bai et al.
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(2019). This choice may be especially useful if it is desired to accommodate high-dimensional

settings. As mentioned previously, our analysis does not permit p and/or d to grow with the

sample size n. We expect, however, using arguments like those in Bai et al. (2019) and Fang et al.

(2020) to be able to extend our results in this direction.

Remark 3.3. As in Remark 2.3, the testing procedure described in this section can be modified to

test (5) differently. The key insight is to observe, by arguing as in the proof of Theorem 2.1, that

T̃n = inf
y≥−

√
nx0(P ):By=0

|Ay −
√
n(β̂n − β(P ))| ,

where T̃n is defined in (6). By analogy with Kn(t, x̃, P ), we therefore introduce

K̃n(t, x̃, P ) := P{ inf
y≥−x̃:By=0

|Ay −
√
n(β̂n − β(P ))| ≤ t} .

With this notation, consider the test of (5) that rejects whenever T̃n exceeds K−1n (1−α+γ, xn, P̂n).

By arguing as in the proof of Theorem 3.1, this test can be shown to control size uniformly over P

whenever

lim inf
n→∞

inf
P∈P̃0

P{T̃n ≤ K̃−1n (1− α+ γ, x0(P ), P̂n)} ≥ 1− α+ γ

and (7) hold.

Remark 3.4. We have omitted a discussion of Studentization at this time, but, as in similar

problems, it may be desirable to do so, especially when different components of β̂n may have

considerable different variances.. We leave the development of such results for future work.
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