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OPTIMIZATION-CONSCIOUS ECONOMETRICS;?

Inference for Support Vector Regression under ¢, Regularization’

By YUEHAO Bal, HUNG HO, GUILLAUME A. POULIOT, AND JOSHUA SHEA™

This paper studies inference for support vector
regression (SVR) with ¢;-norm regularization
(¢£,-SVR). SVR is the extension of the support
vector machine (SVM) classification method
(Vapnik 1998) to the regression problem (Basak,
Pal, and Patranabis 2007) and is designed to
reproduce the good out-of-sample performance
of SVM classification in the regression setting.
It has been frequently used in regression anal-
ysis across fields such as geophysical sciences
(Ghorbani, Zargar, and Jazayeri-Rad 2016),
engineering (Li, West, and Platt 2012), and
image compression (Jiao et al. 2005).

However, theory and closed-form expressions
for the asymptotic variance of the regression
coefficient estimates, or of tests that may be
inverted for inference, are not available. While
there is nonasymptotic methodology for infer-
ence, it is limited to small samples and relies on
distributional assumptions (Gao et al. 2002; Law
and Kwok 2001). Because such assumptions are
typically not satisfied in practice, we find these
methods impractical.

It has been shown that calculations akin to
those used to derive asymptotic distributions of
quantile regression coefficient estimates may be
used to produce asymptotic approximations of
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conditional (on features) probabilities of classi-
fication for SVM (Pouliot 2018). These deriva-
tions may be extended to produce the asymptotic
distribution of the regression coefficients in
SVR, but they rely on a nonparametric estimate
of the density of the regression errors. Density
estimation itself requires an arbitrary choice of
bandwidth parameter and may allow users to
present deceptively narrow confidence intervals
whose coverage properties fall well below the
nominal level. See

This paper addresses these issues and deliv-
ers, to the best of our knowledge, the first der-
ivation of error bars for SVR that does not
require distributional assumptions and the first
rigorous treatment of large-sample inference for
SVR. We further improve on this by developing
a bandwidth-free procedure based on the inver-
sion of a novel regression rank score test statistic
that displays competitive power properties.

I. Setup and Notation

Let W; = (Y.X,Z) € Rx R x R% 1 <i
< n be i1.i.d. random vectors. We assume the
first element of X; is 1. Let P denote the distri-
bution of W;. For a random variable (vector) A,
define the vector (matrix) A, = (A,...,A,)"
Let Qy(x,z) denote the conditional median of Y
givenX = x,Z = z.Weassume that this regres-
sion function is linear, that is,

(1) Oy(x.z) = XB(P) +2v(P),
where 3(P) € R% and v(P) € R% are unknown

parameters. We omit the dependence of 3 and ~
on P whenever it is clear from the context.

! An R package for estimation and inference using /;-SVR
is available at https://github.com/jkcshea/l1svr.
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FIGURE 1. £;-SVR REGRESSION RANK SCORE CONFIDENCE
INTERVAL VERSUS WALD CONFIDENCE INTERVAL

Notes: Simulated coverage probabilities of the 95 percent
confidence interval when errors are heteroskedastic and
Laplacian. These results extend to all other heteroskedastic
error distributions considered in Table 1.

The covariates are (Xi, Z;). We distinguish X;
and Z; to make transparent that the covariate Z; is
the one for which we conduct inference.

Consider the following ¢;-SVR:

(2) min n~" ), max{0,|Y; — X/b — Z{r| — ¢}

(b,r) S 1<i<n
R4xR%

+ A(l10l =+ 17l

where

ol = > |

1<j<d,

and similarly for ||7||;.

Define Fy(y|x,z) as the conditional distri-
bution at ¥ = y given X = x and Z = z and
fr(y|x,z) as the corresponding conditional den-
sity. We impose the following conditions on the
distribution P.

ASSUMPTION 1: The distribution P is such
that

; XiXi XiZi / /
(i) E[(Z-X-’ 7. /)fy(xi/@‘f‘zﬂ_dxi’zi)

is strictly positive and finite.

(ii) fy(ylx.z) exists for all (y,x,z) € R
x R% x R%,

(iti) fy(-|x,2) is symmetric around x'3+ z"y
for all (x,z) € R% x R*,
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(iv) fy(xB+27—€lx.z) > 0 for all (x.z)
€ R4 x R%

(v) Define
r = {(x,z) € R% x R%:
ye ¥B+zy—cxB+zy+c }

There exists ¢ > 0 such that

|/ (y1x.2) = fr(xB+27]x.2)|
< 0
|y —x'8— 21|

(x,z)el

Assumption 1 (i), (ii), and (v) are commonly
imposed in the quantile regression literature in
order to establish the asymptotic distributions
of estimators (Koenker 2005; Bai, Pouliot,
and Shaikh 2019). Assumption 1 (iii)—(iv) are
imposed so that the coefficient estimates from
the £;-SVR model are consistent for the coeffi-
cients of the linear conditional median regres-
sion function.

For pivotal inference, we will require the fol-
lowing strong but powerful homoskedasticity
assumption on P.

ASSUMPTION 2: The distribution P is such
that

(i) /(XB+2y—€lxz) = g(e) for all
(x,z) € R% x R%, for some function g.

(i) Fy(¥B+ 27y —€|lx.z) = p. across all
(x,z) € R% x R%, " where the con-
stant p, may depend on e.

Assumption 2 (i) is imposed so that the den-
sity terms cancel in the expression of the limit-
ing variances of the test statistic, thus delivering
pivotal inference. Assumption 2 (ii) is imposed
so that the test statistic is simpler but is not
required in general.

As in Ghorbani, Zargar, and Jazayeri-Rad
(2016), we impose the following condi-
tion on the tuning parameter \,. It is satisfied
when )\, = \/n, where X is a constant.

ASSUMPTION 3: A\, — 0 asn — oc.
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Let 1, denote the d x 1 vector of ones.
The ¢;-SVR problem (2) has the following pri-
mal linear programming formulation:

(3) maxl,o
N1+ 1 b+ 1 1),

subject to

u—v =Y, —Z,r—X,b,
oc—s =u+v—el,
b b, rtr w08 > 0,

where the optimization is over b, b~, rT,
r, u, v, g, s. See the online Appendix for the
derivation of (3).

II. Inference

For a prespecified v, € R%, we are inter-
ested in inverting tests of

(4) HOZ’Y(P) = 7y versus Hl:'y(P) #+ Y

atlevel o € (O, 1).

For that purpose, consider the following
“short” ¢,-SVR problem constructed by replac-
ing Y, with Y, — Z,~, and omitting Z, from the
regressors in (3):

5
( ) b*,l?:l,%,xv,a,s

Lo+ A,(150" +1,07)
subject to
u—v =Y, —Z,y%—X,(b"—b"),
oc—s =u+v—el,
b ,b",u,v,0,s > 0.

Define 3,as b* — b, where b* and b are part
of the solution to (5). The dual of (5) is

(6)  max (Y,—

a.a

Z;l’YO)/a++€1;1a7
subject to
A1y < X,at < Anlg,
a < a" < —a,

a” € [—1,0]”.
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Denote the solution to (6) by a " and a ™.
We construct the ¢,-SVR regression rank
score test statistic as

n\2Zat
(7) Tn(Wm’Yo) = \/m,
(8) M, = 1-X,(X;X,) X,
and
©) P =5 2 K1Y~ X3~ Zivl = ¢

1<i<n

We define the ¢,-SVR regression rank score
test as

(10> d)n(wn»,YO) = I{‘Tn(wn’rYOH > Zlf%}’

where z;_o is the (1 — a/2)th quantile of the
standard normal distribution.

To see the intuition behind the construction
of T,(W,,7), consider running the SVR of
Y — Z'yyon X, with a™ as the solution to the dual
problem. If H; holds, that is, y(P) = 7, then
regressing ¥ — Z'v, on X and Z should result
in an estimated coefficient “close” to 0 on Z.
Hence, whether or not Z is included in the regres-
sion should have “close” to zero effect on the
primal or dual results. Equivalently, adding the
constraint Z,a* = 0 to (6) should not change
the solution very much, so that Z,,a* = 0holds
approximately when the null hypothesis holds
but may be large otherwise.

The following theorem is our main result. It
establishes the asymptotic distribution of the test
statistic defined in (7) under the null and guar-
antees asymptotic exactness of the test defined
in (10).

THEOREM 1: Suppose P satisfies Assumption
1, )\, satisfies Assumption 3, and P addi-
tionally satisfies the null hypothesis, that is,
Y(P) = 7o Then,

(11) n~'2Z,a" 4

N(0.2E[ZZiFy(X{ B+ Ziv — |X,.Z)] )
where
Z; = Zi— E|ZXfy(Xi B+ Zino — € X, Z;)]

X E[Xixi/fY(Xi/ﬂ + Zivo — 6|Xi’Zi)] _]Xi'
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If P additionally satisfies Assumption 2, then
Tn(wn”YO) i) N(O, 1)’

and therefore, for the problem of testing (4)
at level a € (0,1), ¢,(W,) defined in (10)

satisfies
nanolc E [¢n (Wm ’YO)] = Q.

Moreover, the following corollary delivers
pivotal inference and allows the test to be per-
formed easily.

COROLLARY 1: Suppose P satisfies Assump-
tions 1-2 and the null hypothesis and )\, satisfies
Assumption 3. Then the asymptotic variance in
(11) can be consistently estimated without den-
sity estimation by

1o A
ﬁZnMnanm

where M,, and p, are defined in (8) and (9),
respectively.

According to Theorem 1, we can con-
struct confidence regions by inverting the test
én(Wis0) in (10). The following corollary
shows that the limiting coverage probability of
the confidence region is indeed correct.

COROLLARY 2: Let ¢,(W,,7) denote the test
in (10) with level a.. Define

(12) Cn = {70 € R:qbn(wn?’m) = 0}

Suppose P satisfies Assumptions 1 and 2 and )\,
satisfies Assumption 3. Then,

Jlim P{y € C,} =1-a.

We show in the online Appendix that the test
statistic is monotonic, which guarantees the con-
fidence region is an interval.

III. Simulation

This section presents a simulation study on
the size, power, and width of the error bars for
the ¢;-SVR regression rank score test in finite
samples. We compare its performance against
the median regression rank score test, a natural
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benchmark (Koenker 2005; Bai, Pouliot,
and Shaikh 2019).

The data-generating process is

Y = —08+2X+1Z+ G '(7),

(X.2) ~ N((é)’<140 g))

where G~! is the inverse CDF for the error, T
is uniformly distributed over the [0, 1] interval,
and (X,Z) Il 7. In all simulations, the sample
size is 500 and we set A, = 0. The parameter €
is adjusted according to the distribution of the
error so that G(¢) — G(—¢) = 0.2. The results
of the simulation carry over to cases of higher
dimensional vectors of covariates so long as the
sample size is sufficiently large.

presents the simulation results for
four distributions of error terms: Gaussian, a
symmetric mixture of Gaussian distributions,
Student’s ¢, and Xz. The latter three distribu-
tions allow us to measure the performance of
the test when the error distribution exhibits
either multiple modes, fat tails, or asymmetry.
We set the true parameter v = 0 under the null
to study size properties and v = 0.5 under the
alternative to study power properties at crit-
ical level a = 0.05. Additional simulations
and their details may be found in the online
Appendix.

Rows 1-2 indicate that the size properties
of the SVR and median regression rank score
tests are about equal under homoskedasticity,
but the SVR regression rank score test often
has better power properties. Rows 3—4 reiterate
these findings in the case where the errors are
heteroskedastic. Rows 5-6 likewise show that
the confidence intervals under homoskedasticity
obtained through the SVR regression rank score
test are often narrower than those of the median
regression rank score test. Additional simula-
tions in the online Appendix yield similar com-
parisons between the two inference methods.

IV. Conclusion

In this article, we developed classical
large-sample inference and furthermore deliv-
ered methodology producing asymptotically
valid error bars while circumventing the need
to select a bandwidth parameter. The asymp-
totic theory developed to establish the validity
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TABLE 1—REJECTION PROBABILITIES AND CONFIDENCE INTERVALS FOR DIFFERENT DISTRIBUTIONS OF THE ERRORS
Gaussian Mixture Student’s ¢ X2

SVR QR SVR QR SVR QR SVR QR

Homoskedasticity size, v = 0.0 5.7 5.4 4.6 43 5.7 5.4 5.1 5.4

Homoskedasticity power, v = 0.5 34.6 31.3 37.9 30.6 40.1 359 39.3 39.6

Heteroskedasticity size, v = 0.0 45 4.7 45 4.4 4.4 4.6 4.7 3.7

Heteroskedasticity power, v = 0.5 34.9 30.3 37.7 32.1 37.0 31.7 16.4 15.4

Homoskedasticity 95 percent CI, lower 0.03 —0.02 0.01 —0.03 0.07 0.03 0.07 0.06

Homoskedasticity 95 percent CI, upper 1.02 1.05 1.00 1.05 0.97 1.00 0.96 0.97

of the error bars is novel for SVR and may be
of independent interest. Remarkably, simulation
evidence suggests that the regression rank score
test with our proposed regression rank score test
statistic may outperform the standard median
regression rank score test in inference for the
regression parameters of the linear median
regression function.
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